Existence of solutions of a class of multivalued partial differential equations

1990 ◽  
Vol 42 (11) ◽  
pp. 1295-1301
Author(s):  
A. N. Vityuk
Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


Author(s):  
E. N. Dancer

SynopsisWe study the existence of solutions of the Dirichlet problem for weakly nonlinear elliptic partial differential equations. We only consider cases where the nonlinearities do not depend on any partial derivatives. For these cases, we prove the existence of solutions for a wide variety of nonlinearities.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1608
Author(s):  
J. Ignacio Tello ◽  
Lourdes Tello ◽  
María Luisa Vilar

The aim of this article is to fill part of the existing gap between the mathematical modeling of a green roof and its computational treatment, focusing on the mathematical analysis. We first introduce a two-dimensional mathematical model of the thermal behavior of an extensive green roof based on previous models and secondly we analyze such a system of partial differential equations. The model is based on an energy balance for buildings with vegetation cover and it is presented for general shapes of roofs. The model considers a vegetable layer and the substratum and the energy exchange between them. The unknowns of the problem are the temperature of each layer described by a coupled system of two partial differential equations of parabolic type. The equation modeling the evolution of the temperature of the substratum also considers the change of phase of water described by a maximal monotone graph. The main result of the article is the proof of the existence of solutions of the system which is given in detail by using a regularization of the maximal monotone graph. Appropriate estimates are obtained to pass to the limit in a weak formulation of the problem. The result goes one step further from modeling to validate future numerical results.


Author(s):  
Peter J. Olver

For a system of partial differential equations, the existence of appropriate conservation laws is often a key ingredient in the investigation of its solutions and their properties. Conservation laws can be used in proving existence of solutions, decay and scattering properties, investigation of singularities, analysis of integrability properties of the system and so on. Representative applications, and more complete bibliographies on conservation laws, can be found in references [7], [8], [12], [19]. The more conservation laws known for a given system, the more tools available for the above investigations. Thus a complete classification of all conservation laws of a given system is of great interest. Not many physical systems have been subjected to such a complete analysis, but two examples can be found in [11] and [14]. The present paper arose from investigations ([15], [16]) into the conservation laws of the equations of elasticity.


Sign in / Sign up

Export Citation Format

Share Document