Responses ofArabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants

Planta ◽  
1994 ◽  
Vol 194 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Michael L. Evans ◽  
Hideo Ishikawa ◽  
Mark A. Estelle
2021 ◽  
Author(s):  
Yusuke Shiota ◽  
Takeshi Sakurai ◽  
Noriyasu Ando ◽  
Stephan Shuichi Haupt ◽  
Hidefumi Mitsuno ◽  
...  

AbstractMale moths are capable of orienting towards conspecific females using sex pheromones. Since pheromones are distributed as discontinuous plumes owing to air turbulence, tracking intermittent stimuli with high temporal resolution is suggested to be important for efficient localisation. Here, using a pheromone binding protein (BmPBP1) knockout silkmoth, we revealed that the loss of functional pheromone binding protein altered antennal response kinetics resulting in reduced temporal resolution to intermittent pheromone stimuli on the antennae. Behavioural analysis revealed that BmPBP1-knockout males exhibited significantly less straight walking, which occurs when detecting pheromone stimuli, especially to high frequency stimuli. Accordingly, BmPBP1-knockout males took a significantly longer time to locate pheromone sources and females than did wild-type males. Together, BmPBP1 plays a critical role in determining temporal antennal response kinetics and that an appropriate range of temporal sensory and behavioural resolutions is essential for tracking pheromone plumes for efficient pheromone source localisation in the silkmoth.


2003 ◽  
Vol 285 (1) ◽  
pp. C112-C118 ◽  
Author(s):  
Christopher G. Kevil ◽  
John H. Chidlow ◽  
Daniel C. Bullard ◽  
Dennis F. Kucik

Leukocyte rolling, adhesion, and migration on vascular endothelium involve several sets of adhesion molecules that interact simultaneously. Each of these receptor-ligand pairs may play multiple roles. We examined the role of ICAM-1 in adhesive interactions with mouse aortic endothelial cells (MAECs) in an in vitro flow system. Average rolling velocity of the monocytic cell line WEHI 274.1 was increased on ICAM-1-deficient MAECs compared with wild-type MAECs, both with and without TNF-α stimulation. High-temporal-resolution analysis provided insights into the underlying basis for these differences. Without TNF-α stimulation, average rolling velocity was slower on wild-type than on ICAM-1-deficient endothelium because of brief (<1 s) pauses. On TNF-α-stimulated ICAM-1-deficient endothelium, cells rolled faster because of transient accelerations, producing “jerky” rolling. Firm adhesion to ICAM-1-deficient MAECs was significantly reduced compared with wild-type MAECs, although the number of rolling cells was similar. These results demonstrate directly that ICAM-1 affects rolling velocity by stabilizing leukocyte rolling.


2010 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Andreas H Mahnken ◽  

Over the last decade, cardiac computed tomography (CT) technology has experienced revolutionary changes and gained broad clinical acceptance in the work-up of patients suffering from coronary artery disease (CAD). Since cardiac multidetector-row CT (MDCT) was introduced in 1998, acquisition time, number of detector rows and spatial and temporal resolution have improved tremendously. Current developments in cardiac CT are focusing on low-dose cardiac scanning at ultra-high temporal resolution. Technically, there are two major approaches to achieving these goals: rapid data acquisition using dual-source CT scanners with high temporal resolution or volumetric data acquisition with 256/320-slice CT scanners. While each approach has specific advantages and disadvantages, both technologies foster the extension of cardiac MDCT beyond morphological imaging towards the functional assessment of CAD. This article examines current trends in the development of cardiac MDCT.


Sign in / Sign up

Export Citation Format

Share Document