Theoretical study of the protonation of square-planar palladium(II) complexes. Assessment of basis set and correlation effects

1995 ◽  
Vol 92 (6) ◽  
pp. 361-367 ◽  
Author(s):  
A. Milet ◽  
A. Dedieu
1993 ◽  
Vol 48 (1-2) ◽  
pp. 127-133 ◽  
Author(s):  
Kenneth E. Edgecombe ◽  
Vedene H. Smith, Jr. ◽  
Florian Müller-Plathe

Abstract Basis-set and electron-correlation effects on the appearance and disappearance of nonnuclear maxima in the electron density are examined in Li2 , Na2 , Na4 and Na5 . It is shown that nonnuclear attractors can be removed in all cases except Li2 . The appearance of a pseudoatom in a lithium molecule correlates remarkably well with the size of the region, in an atomic calculation, of V2r(r) for the valence shell of the atom. This and the fact that the pseudoatom is also present in the promolecule indicate that the pseudoatoms are remnants of, or in fact are portions of, atoms that are not perturbed enough in the molecule to remove an essentially atomic characteristic.


2019 ◽  
Vol 41 (6) ◽  
pp. 1107-1107
Author(s):  
Mohammed Taha Yaseen and Abdullah Hussein Kshash Mohammed Taha Yaseen and Abdullah Hussein Kshash

The paper presents six homologues series of Schiff bases ether compounds distinguished by the length of terminal alkoxy groups which substituted on a side benzene nucleus. The above structures were demonstrated through the use of spectroscopic techniques, like FT- IR and 1H-NMR. Polarized hot stage optical microscopy was used to study both mesomorphic properties and phase transitions. The results showed that out of the six compounds only three (B2, B3 and B4) were pure (marble) nematic mesophase, while no liquid crystal properties for (B5, B6 and B7) compounds. The theoretical study for the electronic structures was intended to study the effects of alkyl chain length on the electronic structure by using Gaussian program, DFT and 6-31G as basis set. The theoretical results indicate that there is no effect to the terminal substituted alkoxy groups on the HOMO energies but there is an effect on LUMO energies through decreasing energy for the prepared compounds.


2002 ◽  
Vol 2 ◽  
pp. 455-460 ◽  
Author(s):  
N.L. Jorge ◽  
L.C.A. Leiva ◽  
M.G. Castellanos ◽  
M.E. Gomez Vara ◽  
L.F.R. Cafferata ◽  
...  

We report the results obtained for the experimental determination and the theoretical calculation of the enthalpy of formation of 3,6-diphenyl-1,2,4,5-tetroxane molecule. The experimental work was performed using a macrocalorimeter to measure the combustion heat, and the sublimation enthalpy was determined via the measurement of the vapor pressure at equilibrium with the vapor phase at different temperatures resorting to the Clapeyron-Claussius equation. Theoretical calculations were performed using semiempirical AM1 and PM3 methods as well asab initiotechniques at the 3-21, 6-31G(d,p), and 6-311G(d,p) basis set levels.


Author(s):  
Rabiu Nuhu Muhammad ◽  
N. M. Mahraz ◽  
A. S Gidado ◽  
A. Musa

Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.


2019 ◽  
Vol 58 (5) ◽  
pp. 3189-3195 ◽  
Author(s):  
Emmanuel Puig ◽  
Christophe Desmarets ◽  
Geoffrey Gontard ◽  
Marie Noelle Rager ◽  
Andrew L. Cooksy ◽  
...  

1980 ◽  
Vol 73 (2) ◽  
pp. 399-403 ◽  
Author(s):  
Roman Osman ◽  
Sid Topiol ◽  
Harel Weinstein ◽  
James E. Eilers

1992 ◽  
Vol 70 (2) ◽  
pp. 348-352 ◽  
Author(s):  
Leif J. Saethre ◽  
Odd Gropen

The molecular structures of square-planar X42+, X4+, and X4 (X = S, Se, Te) have been calculated using the effective core potential model. For X42+ the agreement between experimental and calculated values is excellent provided that d orbitals are included in the basis set. For the hypothetical molecules X4+ and X4 the bond lengths are found to increase dramatically as one and, subsequently, two electrons are added to the systems. Extensive population analysis shows that this increase is almost exclusively due to loss of bonding in the π system, whereas the bonding in the σ system remains relatively unaltered. These results make it possible to predict covalent single bond radii for S, Se, and Te for which the influence of π repulsion is removed. From the calculated variation of bond lengths with atomic charge, bond lengths are predicted for a series of planar disulphide rings. Keywords: structure, bonding, chalcogen, theoretical, ECP.


Sign in / Sign up

Export Citation Format

Share Document