Behavior of undissolved impurities in holding ponds and spent-fuel storage facilities at atomic power plants with high-power boiling-water reactors

1989 ◽  
Vol 67 (4) ◽  
pp. 742-747
Author(s):  
A. N. Kondrat'ev ◽  
A. K. Mednikov ◽  
I. D. Gurtov ◽  
L. I. Loshkova ◽  
I. P. Oderei ◽  
...  
Author(s):  
Jinhua Wang ◽  
Bing Wang ◽  
Bin Wu ◽  
Yue Li

There are more than 400 reactors in operation to generate electricity in the world, most of them are pressurized water reactors and boiling water reactors, which generate great amount of spent fuel every year. The residual heat power of the spent fuel just discharged from the reactor core is high, it is required to store the spent fuel in the spent fuel storage pool at the first 5 years after discharged from the reactor, and then the spent fuel could be moved to the interim storage facility for long term storage, or be moved to the factory for final treatment. In the accident of the Fukushima in 2011, the spent fuel pool ruptured, which led to the loss of coolant accident, it was very danger to the spent fuel assemblies stored in the pool. On the other hand, the spent fuel stored in the dry storage facility was safe in the whole process of earthquake and tsunami, which proved inherent safety of the spent fuel dry storage facility. In china, the High Temperature gas cooled Reactor (HTR) is developing for a long time in support of the government. At the first stage, HTR-10 with 10MW thermal power was designed and constructed in the Institute of Nuclear Energy Technology (INET) of Tsinghua University, and then the High Temperature Reactor-Pebble bed Modules (HTR-PM) is designed to meet the commercial application, which is in constructing process in Shandong Province. HTR has some features of the generation four nuclear power plant, including inherent safety, avoiding nuclear proliferation, could generate high temperature industrial heat, and so on. Spherical fuel elements would be used as fuel in HTR-PM, there are many coating fuel particles separated in the fuel element. As the fuel is different for the HTR and the PWR, the fuel element would be discharged into the appropriate spent fuel canister, and the canister would be stored in the appropriate interim storage facility. As the residual power density is very low for the spent fuel of HTR, the spent fuel canister could be cooled with air ventilation without water cooling process. The advantage of air cooling mode is that it is no need to consider the residual heat removal depravation due to loss of coolant accident, so as to increase the inherent safety of the spent fuel storage system. This paper introduced the design, arrangement and safety characteristics of the spent fuel storage well of HTR-PM. The spent fuel storage wells have enough capacity to hold the total spent fuel canisters for the HTR-PM. The spent fuel storage facility includes several storage wells, cold intake cabin, hot air discharge cabin, heat shield cylinders, well lids and so on. The cold intake cabin links the inlets of all the wells, which would be used to import cold air to every well. The hot air discharge cabin links the outlets of all the wells, which would be used to gather heated air discharged from every well, the heated air would be discharged to the atmosphere through the ventilating pipe at the top of the hot air cabin. The design of the spent fuel storage well and the ventilating pipe could discharge the residual heat of the spent fuel canisters in the storage wells, which could ensure the operating safety of the spent fuel storage system.


Author(s):  
Sai Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong ◽  
Zhixin Xu

Currently, the probabilistic risk assessments (PRA) for the nuclear power plant (NPP) sites are primarily focused on the reactor counterpart. However, evoked by the 2011 Fukushima Daiichi accident, it has been widely recognized that a complete site risk profile should not be confined to the reactor units, but should cover all the radiological sources in a site, e.g. spent fuel storage facilities. During the operation of the reactor units, the used fuel assemblies will be unloaded from the reactor core to the storage facilities in a continuous or periodical manner. Accident scenarios involving such facilities can occur with non-negligible frequencies and significant consequences, posing threat to public safety. Hence, the risk contributions from such scenarios should be carefully estimated and integrated into the safety goal evaluations. The spent fuel storage facilities can be categorized as two types: pool storage units and dry cask storage facilities. In the former type, spent fuel assemblies are stored in large pools inside or outside the reactor building, with the residual heat removed by natural or forced water circulation. The latter type, where air or inert gas circulation plays an important role, appear mostly as a complementary method, along with the pool storage units, to expand the plant’s storage capacity. For instance, at the Daiichi plant, there are several fuel pool units holding some fresh fuel and some used fuel, the latter awaiting for its transfer to the dry cask storage facilities on site. Note that, as well as in a joint manner, both storage facilities can be designed to serve the NPPs independently. As a fully developed method to identify potential risk in a logical and quantitative way, the framework of PRA can be generally applied to the spent fuel storage facilities with some special considerations. This paper is aimed at giving recommendations for the spent fuel storage facility PRAs, including (1) clarifying the analysis scope of risk from spent fuel storage facilities; (2) illustrating four key issues that determines such risk; (3) presenting three essential considerations when conducting PRAs to evaluate such risk. Also, this paper integrates the insights obtained from two representative case studies involving two NPP sites with different types of both fuel elements and storage facilities.


Author(s):  
Gunup Kwon ◽  
Phuong Hoang ◽  
Khaled Ata

Most nuclear power plants in the US store the spent fuels in independent spent fuel storage casks and these casks are typically placed on concrete pads outside of the fuel handling building. Under plant design basis events, the spent fuel storage casks should maintain stability without tip-over or direct contact with each other. Sliding and rocking of the casks can be determined using nonlinear dynamic analyses under artificial acceleration input motions. Alternatively, approximate equations developed for sliding and rocking of rigid bodies are used as shown in ASCE 4-16. However, these equations consider rocking and sliding as two separate events. Due to the shortcoming of the approximate method, many power plant owners are required to perform extensive nonlinear analyses to ensure cask stability during seismic events. In this study, an independent spent fuel storage cask model is developed and nonlinear dynamic analyses are conducted with seismic input motions that meet the current US Nuclear Regulatory Commission requirements. The analysis results are compared with the approximate method in ASCE 4-16. Based on the comparison, recommendations are made for the use of the approximate approach.


1980 ◽  
Vol 49 (2) ◽  
pp. 520-524 ◽  
Author(s):  
A. G. Zelenkov ◽  
S. V. Pirozhkov ◽  
Yu. F. Rodionov ◽  
I. K. Shvetsov

Author(s):  
You Shi ◽  
Dong Ning ◽  
Yi-zhong Yang

Boron Carbide (B4C) particle-reinforced aluminum matrix composite is the key material for use as neutron absorber plate in spent fuel storage racks as well as new fuel and in-containment fuel storage racks for GENIII advanced passive nuclear power plants in China. This material has once depended upon importing with high expense and restricted delivery schedule by foreign supplier. Therefore it has meaningful practical significance to realize the localized manufacturing for this material in China. More importantly, since it’s the first time for this material to be used in domestic plant, particular care should be taken to assure the formal supplied neutron absorber material products exhibit high stabilized and reliable service in domestic nuclear engineering. This paper initiates and proposes a principle design framework from technical view in qualification requirements for this neutron absorber material so as to guide the practical engineering application. Aiming at neutron absorber materials supplied under practical manufacturing condition in engineering delivery, the qualification requirements define B4C content, matrix chemistry, 10B isotope, bulk density, 10B areal density, mechanical property and microstructure as key criteria for material performance. The uniformity assessment as to different locations of this material is also required from at least three lots of material. Only qualified material meeting all of the qualification requirements should proceed to be verified by lifetime testing such as irradiation, corrosion and thermal aging testing. Systematic and comprehensive performance assessments and verification for process stabilization could be achieved through the above qualification. The long-term service for this neutron absorber material in reliable and safe way could be convincingly expected in spent fuel storage application in China.


Author(s):  
Omar A. Olvera-Guerrero ◽  
Alfonso Prieto-Guerrero ◽  
Gilberto Espinosa-Paredes

There are currently around 78 Nuclear Power Plants (NPP) in the world based on Boiling Water Reactors (BWR). The current parameter to assess BWR instability issues is the linear Decay Ratio (DR). However, it is well known that BWRs are complex non-linear dynamical systems that may even exhibit chaotic dynamics that normally preclude the use of the DR when the BWR is working at a specific operating point during instability. In this work a novel methodology based on an adaptive Shannon Entropy estimator and on Noise Assisted Empirical Mode Decomposition variants is presented. This methodology was developed for real-time implementation of a stability monitor. This methodology was applied to a set of signals stemming from several NPPs reactors (Ringhals-Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating conditions, that experienced instabilities events, each one of a different nature


Sign in / Sign up

Export Citation Format

Share Document