The fumarate reductase system as a site of anthelmintic attack in Ascaris suum

1984 ◽  
Vol 4 (10) ◽  
pp. 879-883 ◽  
Author(s):  
Margaret M. Barrowman ◽  
Susan E. Marriner ◽  
James A. Bogan

Various benzimidazole compounds have been shown to be highly eIIective as inhibitors (up to 50% reduction of activity) in vitro of the helminth-specilic enzyme, fumarate reductase, of Ascaris suum. Anthelmintically active and inactive benzimidazoles were similarly effective as inhibitors of enzyme activity. Albendazole-induced inhibition of Iumarate reductase was not observed when the enzyme was preincubated with NADH.

Parasitology ◽  
1997 ◽  
Vol 115 (5) ◽  
pp. 553-561 ◽  
Author(s):  
D. J. A. BROWNLEE ◽  
L. HOLDEN-DYE ◽  
R. J. WALKER

The anthelmintic ivermectin has a number of effects on nematodes which result in changes in behaviour, particularly locomotion, including paralysis and an inhibition of feeding. This paper describes the application of an in vitro pharmacological approach to further delineate the action of ivermectin on feeding behaviour. Contraction of Ascaris suum pharyngeal muscle was monitored using a modified pressure transducer system which detects changes in intrapharyngeal pressure and therefore contraction of the radial muscle of the pharynx. The pharynx did not contract spontaneously. However, serotonin (5-HT, 100 μm) stimulated rhythmic contractions and relaxations (pumping) at a frequency of 0·5 Hz. γ-Aminobutyric acid (GABA) and glutamic acid inhibited the pumping elicited by 5-HT. The duration of inhibition was concentration dependent (1–1000 μm) with a threshold of 1 μm and 10 μm respectively (n=8). Ivermectin also inhibited pharyngeal pumping (1–1000 nM). At lower concentrations, ivermectin (1–10 pM) potentiated the GABA and glutamate inhibition, so that inhibition occurred at concentrations which were below threshold in the absence of ivermectin. These data provide evidence that the pharynx is a site for the action of ivermectin. Thus interruption of pharyngeal processes such as, feeding, regulation of hydrostatic pressure and secretion may provide a new site of anthelmintic action.


2021 ◽  
Vol 14 (7) ◽  
pp. 624
Author(s):  
Valentina Corvaglia ◽  
Imène Ait Mohamed Amar ◽  
Véronique Garambois ◽  
Stéphanie Letast ◽  
Aurélie Garcin ◽  
...  

Inhibition of protein–DNA interactions represents an attractive strategy to modulate essential cellular functions. We reported the synthesis of unique oligoamide-based foldamers that adopt single helical conformations and mimic the negatively charged phosphate moieties of B-DNA. These mimics alter the activity of DNA interacting enzymes used as targets for cancer treatment, such as DNA topoisomerase I, and they are cytotoxic only in the presence of a transfection agent. The aim of our study was to improve internalization and selective delivery of these highly charged molecules to cancer cells. For this purpose, we synthesized an antibody-drug conjugate (ADC) using a DNA mimic as a payload to specifically target cancer cells overexpressing HER2. We report the bioconjugation of a 16-mer DNA mimic with trastuzumab and its functional validation in breast and ovarian cancer cells expressing various levels of HER2. Binding of the ADC to HER2 increased with the expression of the receptor. The ADC was internalized into cells and was more efficient than trastuzumab at inhibiting their growth in vitro. These results provide proof of concept that it is possible to site-specifically graft high molecular weight payloads such as DNA mimics onto monoclonal antibodies to improve their selective internalization and delivery in cancer cells.


1983 ◽  
Vol 258 (19) ◽  
pp. 11430-11433 ◽  
Author(s):  
C Edelstein ◽  
J I Gordon ◽  
K Toscas ◽  
H F Sims ◽  
A W Strauss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document