Limits of the self-propagating high-temperature synthesis wave propagation in eutectic composite materials

1994 ◽  
Vol 29 (8) ◽  
pp. 2187-2191 ◽  
Author(s):  
B. M. Khusid ◽  
B. B. Khina ◽  
S. V. Demidkov
2020 ◽  
Vol 93 (3) ◽  
pp. 362-368
Author(s):  
P. A. Miloserdov ◽  
V. A. Gorshkov ◽  
N. V. Sachkova ◽  
N. Yu. Khomenko ◽  
O. M. Miloserdova

2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2008 ◽  
Vol 111 (2-3) ◽  
pp. 463-468 ◽  
Author(s):  
H.Y. Wang ◽  
S.J. Lü ◽  
M. Zha ◽  
S.T. Li ◽  
C. Liu ◽  
...  

2003 ◽  
Vol 18 (8) ◽  
pp. 1842-1848 ◽  
Author(s):  
F. Maglia ◽  
C. Milanese ◽  
U. Anselmi-Tamburini ◽  
Z. A. Munir

Microalloying of MoSi2 to form Mo(1−x)MexSi2 (Me = Nb or V) was investigated by the self-propagating high-temperature synthesis method. With alloying element contents up to 5 at.%, a homogeneous C11b solid solution was obtained. For higher contents of alloying elements, the product contained both the C11b and the hexagonal C40 phases. The relative amount of the C40 phase increases with an increase in the content of alloying metals in the starting mixture. The alloying element content in the hexagonal C40 Mo(1−x)MexSi2 phase was nearly constant at a level of about 12 at.% for all starting compositions. In contrast, the content of the alloying elements in the tetragonal phase is considerably lower (around 4 at.%) and increases slightly as the Me content in the starting mixture is increased.


Author(s):  
Ю.Ю. Бачериков ◽  
И.П. Ворона ◽  
О.Б. Охрименко ◽  
В.П. Кладько ◽  
А.Г. Жук ◽  
...  

Abstract The ZnS:Mn, Mg powder is fabricated by self-propagating high-temperature synthesis with the simultaneous introduction of Mn and Mg impurities. It is found that the simultaneous introduction of Mn and Mg impurities leads to the nonuniform distribution of manganese forming regions with a lower and higher Mn concentration. In the latter case, the manganese ions form paramagnetic clusters. At the same time, numerous centers of self-activated luminescence form in the synthesized ZnS:Mn, Mg due to mechanical stress and lattice strain. Additional annealing leads to a more uniform Mn distribution in the formed ZnS:Mn, Mg phosphor, which is accompanied by an increase in the intensity of the manganese photoluminescence band and quenching of the self-activated luminescence band.


2000 ◽  
Vol 10 (8) ◽  
pp. 1925-1932 ◽  
Author(s):  
Louise Affleck ◽  
Marco D. Aguas ◽  
Ivan P. Parkin ◽  
Quentin A. Pankhurst ◽  
Maxim V. Kuznetsov

Sign in / Sign up

Export Citation Format

Share Document