On efficient use of simulated annealing in complex structural optimization problems

2002 ◽  
Vol 157 (1-4) ◽  
pp. 27-50 ◽  
Author(s):  
O. Hasan�ebi ◽  
F. Erbatur
Author(s):  
Shigang Wang ◽  
Xindu Cheng ◽  
Ji Zhou ◽  
Jun Yu

Abstract In this paper, a new zigzag method for plate structures and a genetic algorithm (GA) of dynamic source seed spaces are developed and a combination of them is used to deal with large scale built-up structural optimization. The new GA combined with the zigzag method can work efficiently to cope with large scale structural optimization with displacement and stress constraints. Examples show that this GA is robust and can be used for many complex structural optimization problems.


Author(s):  
Seifedine N. Kadry ◽  
Abdelkhalak El Hami

The present paper focus on the improvement of the efficiency of structural optimization, in typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for large scale global optimization problems with constraints is proposed. The authors have developed a stochastic algorithm called SAPSPSA that uses Simulated Annealing algorithm (SA). In addition, the Simultaneous Perturbation Stochastic Approximation method (SPSA) is used to refine the solution. Commonly, structural analysis problems are constrained. For the reason that SPSA method involves penalizing constraints a penalty method is used to design a new method, called Penalty SPSA (PSPSA) method. The combination of both methods (Simulated Annealing algorithm and Penalty Simultaneous Perturbation Stochastic Approximation algorithm) provides a powerful hybrid stochastic optimization method (SAPSPSA), the proposed method is applicable for any problem where the topology of the structure is not fixed. It is simple and capable of handling problems subject to any number of constraints which may not be necessarily linear. Numerical results demonstrate the applicability, accuracy and efficiency of the suggested method for structural optimization. It is found that the best results are obtained by SAPSPSA compared to the results provided by the commercial software ANSYS.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
Qing Duan ◽  
Lu Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
Xingping Sun ◽  
...  

Swarm-based algorithm can successfully avoid the local optimal constraints, thus achieving a smooth balance between exploration and exploitation. Salp swarm algorithm(SSA), as a swarm-based algorithm on account of the predation behavior of the salp, can solve complex daily life optimization problems in nature. SSA also has the problems of local stagnation and slow convergence rate. This paper introduces an improved salp swarm algorithm, which improve the SSA by using the chaotic sequence initialization strategy and symmetric adaptive population division. Moreover, a simulated annealing mechanism based on symmetric perturbation is introduced to enhance the local jumping ability of the algorithm. The improved algorithm is referred to SASSA. The CEC standard benchmark functions are used to evaluate the efficiency of the SASSA and the results demonstrate that the SASSA has better global search capability. SASSA is also applied to solve engineering optimization problems. The experimental results demonstrate that the exploratory and exploitative proclivities of the proposed algorithm and its convergence patterns are vividly improved.


2021 ◽  
Vol 218 ◽  
pp. 106856
Author(s):  
Manoharan Premkumar ◽  
Pradeep Jangir ◽  
Ravichandran Sowmya

1973 ◽  
Vol 99 (1) ◽  
pp. 243-248
Author(s):  
George I.N. Rozvany

Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


Sign in / Sign up

Export Citation Format

Share Document