MOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems

2021 ◽  
Vol 218 ◽  
pp. 106856
Author(s):  
Manoharan Premkumar ◽  
Pradeep Jangir ◽  
Ravichandran Sowmya
2014 ◽  
Vol 59 (6) ◽  
pp. 777-792 ◽  
Author(s):  
Francisco Luna ◽  
Gustavo R. Zavala ◽  
Antonio J. Nebro ◽  
Juan J. Durillo ◽  
Carlos A. Coello Coello

Author(s):  
Po Ting Lin ◽  
Wei-Hao Lu ◽  
Shu-Ping Lin

In the past few years, researchers have begun to investigate the existence of arbitrary uncertainties in the design optimization problems. Most traditional reliability-based design optimization (RBDO) methods transform the design space to the standard normal space for reliability analysis but may not work well when the random variables are arbitrarily distributed. It is because that the transformation to the standard normal space cannot be determined or the distribution type is unknown. The methods of Ensemble of Gaussian-based Reliability Analyses (EoGRA) and Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) have been developed to estimate the joint probability density function using the ensemble of kernel functions. EoGRA performs a series of Gaussian-based kernel reliability analyses and merged them together to compute the reliability of the design point. EGTRA transforms the design space to the single-variate design space toward the constraint gradient, where the kernel reliability analyses become much less costly. In this paper, a series of comprehensive investigations were performed to study the similarities and differences between EoGRA and EGTRA. The results showed that EGTRA performs accurate and effective reliability analyses for both linear and nonlinear problems. When the constraints are highly nonlinear, EGTRA may have little problem but still can be effective in terms of starting from deterministic optimal points. On the other hands, the sensitivity analyses of EoGRA may be ineffective when the random distribution is completely inside the feasible space or infeasible space. However, EoGRA can find acceptable design points when starting from deterministic optimal points. Moreover, EoGRA is capable of delivering estimated failure probability of each constraint during the optimization processes, which may be convenient for some applications.


2021 ◽  
Vol 52 (1) ◽  
pp. 12-15
Author(s):  
S.V. Nagaraj

This book is on algorithms for network flows. Network flow problems are optimization problems where given a flow network, the aim is to construct a flow that respects the capacity constraints of the edges of the network, so that incoming flow equals the outgoing flow for all vertices of the network except designated vertices known as the source and the sink. Network flow algorithms solve many real-world problems. This book is intended to serve graduate students and as a reference. The book is also available in eBook (ISBN 9781316952894/US$ 32.00), and hardback (ISBN 9781107185890/US$99.99) formats. The book has a companion web site www.networkflowalgs.com where a pre-publication version of the book can be downloaded gratis.


2021 ◽  
pp. 1-21
Author(s):  
Chu-Min Li ◽  
Zhenxing Xu ◽  
Jordi Coll ◽  
Felip Manyà ◽  
Djamal Habet ◽  
...  

The Maximum Satisfiability Problem, or MaxSAT, offers a suitable problem solving formalism for combinatorial optimization problems. Nevertheless, MaxSAT solvers implementing the Branch-and-Bound (BnB) scheme have not succeeded in solving challenging real-world optimization problems. It is widely believed that BnB MaxSAT solvers are only superior on random and some specific crafted instances. At the same time, SAT-based MaxSAT solvers perform particularly well on real-world instances. To overcome this shortcoming of BnB MaxSAT solvers, this paper proposes a new BnB MaxSAT solver called MaxCDCL. The main feature of MaxCDCL is the combination of clause learning of soft conflicts and an efficient bounding procedure. Moreover, the paper reports on an experimental investigation showing that MaxCDCL is competitive when compared with the best performing solvers of the 2020 MaxSAT Evaluation. MaxCDCL performs very well on real-world instances, and solves a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined with the best performing MaxSAT solvers, solves the highest number of instances of a collection from all the MaxSAT evaluations held so far.


2021 ◽  
Author(s):  
Mohammad Shehab ◽  
Laith Abualigah

Abstract Multi-Verse Optimizer (MVO) algorithm is one of the recent metaheuristic algorithms used to solve various problems in different fields. However, MVO suffers from a lack of diversity which may trapping of local minima, and premature convergence. This paper introduces two steps of improving the basic MVO algorithm. The first step using Opposition-based learning (OBL) in MVO, called OMVO. The OBL aids to speed up the searching and improving the learning technique for selecting a better generation of candidate solutions of basic MVO. The second stage, called OMVOD, combines the disturbance operator (DO) and OMVO to improve the consistency of the chosen solution by providing a chance to solve the given problem with a high fitness value and increase diversity. To test the performance of the proposed models, fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems, and seven CEC 2011 real-world problems were used in both phases of the enhancement. The second step, known as OMVOD, incorporates the disruption operator (DO) and OMVO to improve the accuracy of the chosen solution by giving a chance to solve the given problem with a high fitness value while also increasing variety. Fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems and seven CEC 2011 real-world problems were used in both phases of the upgrade to assess the accuracy of the proposed models.


Author(s):  
Shanglong Zhang ◽  
Julián A. Norato

Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.


2018 ◽  
Vol 41 ◽  
pp. 159-166 ◽  
Author(s):  
Mahamed G.H. Omran ◽  
Salah Alsharhan ◽  
Maurice Clerc

Sign in / Sign up

Export Citation Format

Share Document