The existence and stability of the equilibrium points of a triaxial rigid body moving around another triaxial rigid body

1986 ◽  
Vol 39 (1) ◽  
pp. 67-83 ◽  
Author(s):  
K. B. Bhatnagar ◽  
Usha Gupta
2017 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Nutan Singh ◽  
A. Narayan

This paper explore pulsating Curves of zero velocityof the infinitesimal mass around the triangular equilibrium points with oblate and triaxial rigid body in the elliptical restricted three body problem(ER3BP).


2017 ◽  
Vol 11 ◽  
pp. 45-56 ◽  
Author(s):  
Bello Nakone ◽  
Aminu Abubakar Hussain

This study examines the effect of the relativistic factor as well as the triaxiality effect of the bigger primary on the positions and stability of the collinear points in the frame work of the post-Newtonian approximation. Using semi-analytical and numerical approach the collinear points are found to be unstable. A numerical exploration in this connection, with the Earth-Moon system, reveals that the relativistic factor has an effect on these positions. It is also found that under the combined effect of relativistic factor and triaxiality, the collinear point L1 moves towards the primaries with the increase in triaxiality, while L2 and L3 move away from the bigger primary. It is also seen that in most of the cases in the presence of triaxiality, the effect of relativistic factor on the positions of L1 and L3 is not observable; however it has an observable effect on the position of L2 in the presence of triaxiality except for the case 2.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


1978 ◽  
Vol 41 ◽  
pp. 305-314
Author(s):  
W.J. Robinson

AbstractIn the restricted problem of three point masses, the positions of the equilibrium points are well known and are tabulated. When the satellite is a rigid body, these values no longer correspond to the equilibrium points. This paper seeks to determine the magnitudes of the discrepancies.


2020 ◽  
Author(s):  
Ibrahim M. ELmojtaba ◽  
Fatma Al-Musalhi ◽  
Asma Al-Ghassani ◽  
Nasser Al-Salti

Abstract A mathematical model with environmental transmission has been proposed and analyzed to investigate its role in the transmission dynamics of the ongoing COVID-19 outbreak. Two expressions for the basic reproduction number R0 have been analytically derived using the next generation matrix method. The two expressions composed of a combination of two terms related to human to human and environment to human transmissions. The value of R0 has been calculated using estimated parameters corresponding to two datasets. Sensitivity analysis of the reproduction number to the corresponding model parameters has been carried out. Existence and stability analysis of disease free and endemic equilibrium points have been presented in relation with the obtained expressions of R0. Numerical simulations to demonstrate the effect of some model parameters related to environmental transmission on the disease transmission dynamics have been carried out and the results have been demonstrated graphically.


2017 ◽  
Vol 6 (3) ◽  
pp. 132-140
Author(s):  
Resmawan Resmawan ◽  
Paian Sianturi ◽  
Endar Hasafah Nugrahani

This article discusses SEIRS-SEI epidemic models on malaria with regard to human recovery rate. SEIRS-SEI in this model is an abbreviation of the population class used in the model, ie Susceptible, Exposed, Infected, and Recovered populations in humans and Susceptible, Exposed, and Infected populations in mosquito. These epidemic models belong to mathematical models which clarify a phenomenon of epidemic transmission of malaria by observing the human recovery rate after being infected and susceptible. Human population falls into four classes, namely susceptible humans, exposed humans, infected humans, and recovered humans. Meanwhile, mosquito population serving as vectors of the disease is divided into three classes, including susceptible mosquitoes, exposed mosquitoes, and infected mosquitoes. Such models are termed SEIRS-SEI epidemic models. Analytical discussion covers model formation, existence and stability of equilibrium points, as well as numerical simulation to find out the influence of human recovery rate on population dynamics of both species. The results show that the fixed point without disease ( ) is stable in condition  and unstable in condition . The simulation results show that the given treatment has an influence on the dynamics of the human population and mosquitoes. If the human recovery rate from the infected state becomes susceptible to increased, then the number of infected populations of both species will decrease. As a result, the disease will not spread and within a certain time will disappear from the population.


Sign in / Sign up

Export Citation Format

Share Document