The structure of an infinite, complete, convex hypersurface inE 4 with bounded mean curvature

1994 ◽  
Vol 69 (1) ◽  
pp. 829-830
Author(s):  
A. A. Borisenko ◽  
L. N. Sergienko
1980 ◽  
Vol 77 ◽  
pp. 107-123 ◽  
Author(s):  
Takeshi Sasaki

A locally strongly convex hypersurface in the affine space Rn + 1 is called an affine hypersphere if the affine normals (§ 1) through each point of the hypersurface either all intersect at one point, called its center, or else are all mutually parallel. It is called elliptic, parabolic or hyperbolic according to whether the center is, respectively, on the concave side of the hypersurface, at infinity or on the convex side. This class of hypersurfaces was first studied systematically by W. Blaschke ([1]) in the frame of affine geometry. In his paper [3] E. Calabi redefined it and proposed a problem of determining all complete hyperbolic affine hyperspheres and raised a conjecture that these hypersurfaces are asymptotic to the boundary of a convex cone and every non-degenerate cone V determines a hyperbolic affine hypersphere, asymptotic to the boundary of V, uniquely by the value of its mean curvature.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6449-6459 ◽  
Author(s):  
Akram Ali ◽  
Siraj Uddin ◽  
Wan Othman ◽  
Cenap Ozel

In this paper, we establish some optimal inequalities for the squared mean curvature in terms warping functions of a C-totally real doubly warped product submanifold of a locally conformal almost cosymplectic manifold with a pointwise ?-sectional curvature c. The equality case in the statement of inequalities is also considered. Moreover, some applications of obtained results are derived.


Author(s):  
Alessandro Goffi ◽  
Francesco Pediconi

AbstractWe investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and $$\infty $$ ∞ -Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián Pozuelo ◽  
Manuel Ritoré

Abstract We consider an asymmetric left-invariant norm ∥ ⋅ ∥ K {\|\cdot\|_{K}} in the first Heisenberg group ℍ 1 {\mathbb{H}^{1}} induced by a convex body K ⊂ ℝ 2 {K\subset\mathbb{R}^{2}} containing the origin in its interior. Associated to ∥ ⋅ ∥ K {\|\cdot\|_{K}} there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of ℝ 2 {{\mathbb{R}}^{2}} . Under the assumption that K has C 2 {C^{2}} boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C 2 {C^{2}} boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function H K {H_{K}} out of the singular set. In the case of non-vanishing mean curvature, the condition that H K {H_{K}} be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂ ⁡ K {\partial K} dilated by a factor of 1 H K {\frac{1}{H_{K}}} . Based on this we can define a sphere 𝕊 K {\mathbb{S}_{K}} with constant mean curvature 1 by considering the union of all horizontal liftings of ∂ ⁡ K {\partial K} starting from ( 0 , 0 , 0 ) {(0,0,0)} until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2017 ◽  
Vol 369 (12) ◽  
pp. 8319-8342 ◽  
Author(s):  
Glen Wheeler ◽  
Valentina-Mira Wheeler

Sign in / Sign up

Export Citation Format

Share Document