Relativistic mean-field parametrization of effective interaction in nuclear matter

1992 ◽  
Vol 342 (4) ◽  
pp. 387-392 ◽  
Author(s):  
Stefan Gmuca
2008 ◽  
Vol 17 (08) ◽  
pp. 1441-1452 ◽  
Author(s):  
J. LI ◽  
B. Y. SUN ◽  
J. MENG

The properties of pairing correlations in symmetric nuclear matter are studied in the relativistic mean field (RMF) theory with the effective interaction, PK1. Considering the well-known problem that the pairing gap at the Fermi surface calculated with RMF effective interactions is three times larger than that with the Gogny force, an effective factor in the particle–particle channel is introduced. For the RMF calculation with PK1, an effective factor of 0.76 gives a maximum pairing gap of 3.2 MeV at a Fermi momentum of 0.9 fm-1, which is consistent with the result with the Gogny force.


2004 ◽  
Vol 13 (07) ◽  
pp. 1519-1524 ◽  
Author(s):  
VERÔNICA A. DEXHEIMER ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MOISÉS RAZEIRA ◽  
MANFRED DILLIG

For the nuclear many body problem at high densities, formulated in the framework of a relativistic mean-field theory, we investigate in detail the compression modulus of nuclear matter as a function of the effective nucleon mass. We include consistently in our modelling chemical equilibrium as well as baryon number and electric charge conservation and investigate properties of neutron stars. Among other predictions we focus on the dependence of the maximum mass of a sequence of neutron stars as a function of the compression modulus and the nucleon effective mass.


2012 ◽  
Vol 21 (06) ◽  
pp. 1250055 ◽  
Author(s):  
M. RASHDAN

The NL-RA1 effective interaction of the relativistic mean field theory is employed to study the structure of deformed and superheavy nuclei, using an axially deformed harmonic oscillator basis. It is found that a fair agreement with the experimental data is obtained for the binding energies (BE), deformation parameters and charge radii. Comparison with NL-Z2, NLSH and NL3 interactions show that NL-Z2 gives good binding but larger radii, while NL-SH gives good radii but larger binding. The NL-RA1 interaction is also tested for the new deformed superheavy element with Z≥98. Excellent agreement with the experimental binding is obtained, where the relative error in BEs of Cf, Fm, No, Rf, Sg and Ea (Z = 110) isotopes are found to be of the order ~0.1%. The NL3 predicted larger binding and larger relative errors ~0.2–0.5%. Furthermore, the experimental Q-values of the alpha-decay of the superheavy elements 270110, 288114 and 292116 are satisfactory reproduced by NL-RA1 interaction, where the agreement is much better than that predicted by the phenomenological mass FRDM model. Furthermore, the alpha-decay chain of element 294118 are also better reproduced by NL-RA1 interaction.


2000 ◽  
Vol 15 (24) ◽  
pp. 1529-1537 ◽  
Author(s):  
J. C. T. DE OLIVEIRA ◽  
M. KYOTOKU ◽  
M. CHIAPPARINI ◽  
H. RODRIGUES ◽  
S. B. DUARTE

In the context of a relativistic mean field theory the delta-resonance matter formation in a highly compressed nuclear medium is investigated. For a given set of nucleon–meson coupling constants, the delta-resonance formation is studied by changing the delta-meson coupling constants. The effect on the equation of state and on the delta-resonance population with respect to changes in the delta-resonance coupling constants values is discussed for very asymmetric and quasi-symmetric nuclear matter, as an extension of works restricted to the symmetric nuclear matter treatment.5,6


2013 ◽  
Author(s):  
M. Dutra ◽  
O. Lourenço ◽  
B. V. Carlson ◽  
A. Delfino ◽  
D. P. Menezes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document