Lengths of the periods of the continued fraction expansion of quadratic irrationalities and on the class numbers of real quadratic fields

1991 ◽  
Vol 53 (3) ◽  
pp. 229-237
Author(s):  
E. P. Golubeva
1992 ◽  
Vol 44 (4) ◽  
pp. 824-842 ◽  
Author(s):  
S. Louboutin ◽  
R. A. Mollin ◽  
H. C. Williams

AbstractIn this paper we consider the relationship between real quadratic fields, their class numbers and the continued fraction expansion of related ideals, as well as the prime-producing capacity of certain canonical quadratic polynomials. This continues and extends work in [10]–[31] and is related to work in [3]–[4].


2002 ◽  
Vol 166 ◽  
pp. 29-37 ◽  
Author(s):  
Koshi Tomita ◽  
Kouji Yamamuro

AbstractLet d be a square-free positive integer and l(d) be the period length of the simple continued fraction expansion of ωd, where ωd is integral basis of ℤ[]. Let εd = (td + ud)/2 (> 1) be the fundamental unit of the real quadratic field ℚ(). In this paper new lower bounds for εd, td, and ud are described in terms of l(d). The lower bounds of εd are sharper than the known bounds and those of td and ud have been yet unknown. In order to show the strength of the method of the proof, some interesting examples of d are given for which εd and Yokoi’s d-invariants are determined explicitly in relation to continued fractions of the form .


1991 ◽  
Vol 124 ◽  
pp. 181-197 ◽  
Author(s):  
Hideo Yokoi

Although class number one problem for imaginary quadratic fields was solved in 1966 by A. Baker [3] and by H. M. Stark [25] independently, the problem for real quadratic fields remains still unsettled. However, since papers by Ankeny–Chowla–Hasse [2] and H. Hasse [9], many papers concerning this problem or giving estimate for class numbers of real quadratic fields from below have appeared. There are three methods used there, namely the first is related with quadratic diophantine equations ([2], [9], [27, 28, 29, 31], [17]), and the second is related with continued fraction expantions ([8], [4], [16], [14], [18]).


2018 ◽  
Vol 61 (4) ◽  
pp. 1193-1212
Author(s):  
Alexander Dahl ◽  
Vítězslav Kala

AbstractWe construct a random model to study the distribution of class numbers in special families of real quadratic fields ${\open Q}(\sqrt d )$ arising from continued fractions. These families are obtained by considering continued fraction expansions of the form $\sqrt {D(n)} = [f(n),\overline {u_1,u_2, \ldots ,u_{s-1} ,2f(n)]} $ with fixed coefficients u1, …, us−1 and generalize well-known families such as Chowla's 4n2 + 1, for which analogous results were recently proved by Dahl and Lamzouri [‘The distribution of class numbers in a special family of real quadratic fields’, Trans. Amer. Math. Soc. (2018), 6331–6356].


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Ahmad Issa ◽  
Hasan Sankari

Let d be a positive integer which is not a perfect square and n be any nonzero fixed integer. Then, the equation x 2 − d y 2 = n is known as the general Pell equation. In this paper, we give some criteria for class numbers of certain real quadratic fields to be greater than one, depending on the solvability of the general Pell equation, ideals in quadratic orders, and the period length of the simple continued fraction expansions of d .


1987 ◽  
Vol 105 ◽  
pp. 39-47 ◽  
Author(s):  
R. A. Mollin

Many authors have studied the relationship between nontrivial class numbers h(n) of real quadratic fields and the lack of integer solutions for certain diophantine equations. Most such results have pertained to positive square-free integers of the form n = l2 + r with integer >0, integer r dividing 4l and — l<r<l. For n of this form, is said to be of Richaud-Degert (R-D) type (see [3] and [8]; as well as [2], [6], [7], [12] and [13] for extensions and generalizations of R-D types.)


Sign in / Sign up

Export Citation Format

Share Document