Newcastle disease virus and two influenza viruses: Differing effects of acid and temperature on the uptake of infectious virus into bovine and canine kidney cell lines

1986 ◽  
Vol 88 (3-4) ◽  
pp. 159-166 ◽  
Author(s):  
P. H. Russell
1973 ◽  
Vol 142 (2) ◽  
pp. 481-486 ◽  
Author(s):  
T. J. Smith ◽  
A. S. Lubiniecki ◽  
J. A. Armstrong ◽  
S. B. Russ

2013 ◽  
Vol 8 (6) ◽  
pp. 520-526 ◽  
Author(s):  
Dawid Nidzworski ◽  
Krzysztof Smietanka ◽  
Zenon Minta ◽  
Bogusław Szewczyk

AbstractNewcastle disease Virus (NDV), a member of the Paramyxoviridae family, and Influenza virus, from the Orthomyxoviridae family, are two main avian pathogens that cause serious economic problems in poultry farming. NDV strains are classified into three major pathotypes: velogenic, mesogenic, and lentogenic. Avian influenza viruses (AIV) are also divided into: low pathogenic (LPAI) and highly pathogenic (HPAI) strains. Both viruses are enveloped, single stranded, negative-sense RNA viruses which give similar symptoms ranging from sub-clinical infections to severe disease, including loss in egg production, acute respiratory syndrome, and high mortality, depending on their level of pathogenicity. This similarity hinders diagnosis when based solely on clinical and post mortem examination. Most of the currently available molecular detection methods are also pathogenspecific, so that more than one RT-PCR is then required to confirm or exclude the presence of both pathogens. To overcome this disadvantage, we have applied a One Step Duplex RT-PCR method to distinguish between those two pathogens. The main objective of the project was to develop a universal, fast, and inexpensive method which could be used in any veterinary laboratory.


2005 ◽  
Vol 79 (2) ◽  
pp. 1180-1190 ◽  
Author(s):  
Jianrong Li ◽  
Vanessa R. Melanson ◽  
Anne M. Mirza ◽  
Ronald M. Iorio

ABSTRACT It has been shown that the L289A-mutated Newcastle disease virus (NDV) fusion (F) protein gains the ability to promote fusion of Cos-7 cells independent of the viral hemagglutinin-neuraminidase (HN) protein and exhibits a 50% enhancement in HN-dependent fusion over wild-type (wt) F protein. Here, we show that HN-independent fusion by L289A-F is not exhibited in BHK cells or in several other cell lines. However, similar to the results in Cos-7 cells, the mutated protein plus HN does promote 50 to 70% more fusion above wt levels in all of the cell lines tested. L289A-F protein exhibits the same specificity as the wt F protein for the homologous HN protein, as well as NDV-human parainfluenza virus 3 HN chimeras. The mutated F protein promotes fusion more effectively than the wt when it is coexpressed with either the chimeras or HN proteins deficient in receptor recognition activity. In addition, its fusogenic activity is significantly more resistant to removal of sialic acid on target cells. These findings are consistent with the demonstration that L289A-F interacts more efficiently with wt and mutated HN proteins than does wt F by a cell surface coimmunoprecipitation assay. Taken together, these findings indicate that L289A-F promotes fusion by a mechanism analogous to that of the wt protein with respect to the HN-F interaction but is less dependent on the attachment activity of HN. The phenotype of the mutated F protein correlates with a conformational change in the protein detectable by two different monoclonal antibodies. This conformational change may reflect a destabilization of F structure induced by the L289A substitution, which may in turn indicate a lower energy requirement for fusion activation.


Sign in / Sign up

Export Citation Format

Share Document