Solute transfer in fluid flow in permeable tubes with application to flow in glomerular capillaries

1993 ◽  
Vol 96 (1-4) ◽  
pp. 139-154 ◽  
Author(s):  
P. Chaturani ◽  
T. R. Ranganatha
2019 ◽  
Vol 74 (12) ◽  
pp. 1057-1067
Author(s):  
M. Varunkumar ◽  
P. Muthu

AbstractWe considered a steady flow of viscous incompressible fluid and solute transfer in an axisymmetric tube of uniform cross section with variable wall permeability, which is relevant to the study of movement of solute across the glomerular capillaries. The solutions for the nonlinear governing equations of the fluid flow and solute transfer are obtained by analytical/numerical methods. The combined effect of variable wall permeability and flow parameters on the hydrostatic pressure, osmotic pressure, velocity profiles, concentration profiles, and the total solute clearance are investigated and are presented in this paper. It is found that an increase in the variable permeability parameter increases the solute concentration at the wall.


Author(s):  
Varunkumar Merugu

This paper describes a mathematical model of solute transfer in fluid flow across a permeable channel with variable viscosity, with applications to glomerular capillary blood flow. Solute transfer through the glomerular capillary wall is controlled by the difference in transcapillary hydrostatic pressure and the analogous difference in colloid osmotic pressure (Starling’s law). Using appropriate analytical and numerical approaches, the solutions of coupled equations regulating fluid flow and solute transport are found. The current study’s hydrostatic and osmotic pressure curves are qualitatively in excellent agreement with the experimental data. The effects of variable viscosity on velocity profiles, concentration profiles, and total solute clearance are seen to be substantial, and the findings are graphically depicted.


Author(s):  
John Kuo ◽  
John S. Pate

Our understanding of nutrient transfer between host and flowering parasitic plants is usually based mainly on physiological concepts, with little information on haustorial structure related to function. The aim of this paper is to study the haustorial interface and possible pathways of water and solute transfer between a number of host and parasites.Haustorial tissues were fixed in glutaraldehyde and embedded in glycol methacrylate (LM), or fixed in glutaraldehyde then OsO4 and embedded in Spurr’s resin (TEM).Our study shows that lumen to lumen continuity occurs between tracheary elements of a host and four S.W. Australian species of aerial mistletoes (Fig. 1), and some root hemiparasites (Exocarpos spp. and Anthobolus foveolatus) (Fig. 2). On the other hand, haustorial interfaces of the root hemiparasites Olax phyllanthi and Santalum (2 species) are comprised mainly of parenchyma, as opposed to terminating tracheads or vessels, implying that direct solution transfer between partners via vessels or tracheary elements may be limited (Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document