uniform cross section
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Alireza Shabanpour ◽  
Mahmoud Ghazavi

The compressive behavior of tapered piles, particularly those with circular cross-sections, has been investigated during the last few decades. However, the tensile behavior of such piles has been rarely studied in the literature. In this paper, 12 static axial tests, including six compressive and also six tensile tests, were performed on instrumented piles with uniform and tapered cross-sections by using a geotechnical centrifuge. Three of the piles had correspondingly circular, square and X-shaped uniform cross-sections along their length, while the other three ones were non-uniform (tapered), all of which had the same length and volume. The results are presented in three main forms: the variation of load versus pile head displacement, the distribution of axial force along the pile length, and the distribution of the unit shaft resistance along the pile length. The behavior of tapered piles is compared with that of uniform cross-section piles. The results confirm the superiority of tapered piles over uniform cross-section piles in terms of load-bearing capacity and construction costs under both tensile and compressive loading.


2021 ◽  
Vol 30 ◽  
pp. 24-30
Author(s):  
Pavel Horák ◽  
Petr Havlásek

The time-dependent behavior of concrete members with uniform cross-section subjected to symmetric drying can be predicted with one of many models anchored in the design codes. Since these models use the cross-sectional approach, only the average quantities can be obtained. More complex phenomena can be investigated by means of a coupled hygro-mechanical finite element analysis. Owing to insufficient or missing experimental data, the input parameters for the moisture transport model are often tuned to match the development of axial shrinkage or moisture loss measured on small-scale laboratory specimens. In this paper it is assessed whether this approach leads to a unique set of parameters of the Bažant-Najjar model for moisture diffusion. Additionally, for the selected sets of parameters the analysis is repeated with modified size and/or boundary conditions leading to asymmetric drying and the results are discussed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 656
Author(s):  
Michael Regev ◽  
Stefano Spigarelli

Friction stir processing (FSP), a severe plastic deformation process, was applied on pure Cu to obtain a stir zone with a very fine grain size. Yet, when FSP is used, the stir zone is as wide as the diameter of the shoulder at the upper surface of the weld and markedly narrower near its opposite surface. This property, as well as the differences between the advancing side and the retreating side, makes it impossible to obtain a uniform cross-section as far as the microstructure and mechanical properties are concerned. For these reasons, a new approach is proposed in which the material was processed on both sides, thus yielding a wider, rectangular and more homogenous stir zone from which all the specimens were machined out. Processing the material from both sides eliminated any microstructural difference between the upper and the lower side, at least within the gauge length’s cross-section of the creep specimens. Although grain refinement was detected, the mechanical properties of the friction-stir-processed (FSP’ed) material are inferior relative to those of the parent material. The TEM study reported in the current paper revealed the existence of nanosized grains in the FSP’ed material due to dynamic recrystallization (DRX) occurring during the processing stage. Because both X-ray inspection and fractography showed that the FSP’ed material was free of defects, the material may not comply with the Hall–Petch relation due to lower dislocation density caused by XRD occurring during FSP. The inverse Hall–Petch effect may also be considered as an assistive mechanism in mechanical property deterioration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuping Wang ◽  
Jiancheng Tao ◽  
Xiaojun Qiu ◽  
Ian S. Burnett

AbstractIt has been demonstrated that a staggered window achieves better noise reduction performance than a traditional single glazing one at middle to high frequencies while maintaining a degree of natural ventilation. There is, however, little improvement in the low frequency range. In contrast, this work proposes to apply coiled-up silencers consisting of coupled tubes on the side walls of staggered windows to obtain noise attenuation in a broad band, especially in the low frequency range. Each element in the silencer consists of two coupled tubes with different cross sections so that noise at more frequencies can be attenuated than that with a uniform cross section. The simulation results show that 8.8 dB overall insertion loss can be obtained between 100 and 500 Hz after applying a combination of silencers designed at 7 different frequencies, and the insertion loss of the staggered window is increased from 6.7 to 15.6 dBA between 100 and 2000 Hz for normal incident traffic noise with the proposed silencers installed. The design is validated by the experiments with a 1:4 scale down model.


2021 ◽  
Vol 16 ◽  
pp. 8-13
Author(s):  
Mohamed Gaith

A cantilevered tapered slender pipe conveying an incompressible, inviscid fluid of one material is not a conserved system. For certain large fluid velocity, the pipe with uniform cross section would go unstable via flutter Hopf bifurcation. In this paper, the flow induced vibration for cantilever tapering pipe transporting a fluid is presented. Euler Bernoulli and Hamilton’s theories are applied to develop the mathematical model which will be solved using well known Galerkan’s procedure. The effect of smooth tapering of the circular cross sectional area, flow velocity and pipe to fluid mass fraction on the complex natural frequencies and stability will be investigated.


2021 ◽  
Vol 245 ◽  
pp. 02006
Author(s):  
Wu Jing ◽  
Han Junke ◽  
Ye Fang ◽  
Qi Wenyan ◽  
Yu Jinshan ◽  
...  

In this paper, the structural optimization of high-rise guyed tower is carried out for the guyed wire and tower column schemes. The schemes are compared from the four guyed wires and eight guyed wires, the width of the tower column, the uniform cross-section tower column and the variable cross-section tower column, etc. And the single-column tower with eight guyed wires and variable cross-section is recommended for the high-rise guyed tower. Through the full-scale test study of the high-rise guyed tower, the safety of the high-rise guyed tower structural optimization and the feasibility of engineering application are verified. According to the technical and economic analysis of traditional self-supporting towers and high-rise guyed towers recommended in this paper, it can be seen that the weight and total cost of the high-rise guyed towers are 75.3% and 88.5% of the traditional self-supporting towers respectively, demonstrating the technical and economic advantages of the high-rise guyed towers. The advantages and disadvantages of high-rise guyed towers and self-supporting towers are summarized for reference in engineering design.


2021 ◽  
Vol 318 ◽  
pp. 01015
Author(s):  
Hayder A. Mahdi ◽  
Omar k. Mohialdeen ◽  
Amer G. Jihad

One of the Iraqi geotechnical problems is the presence of gypseous soils covering about (27-36) percentage of Iraq soils containing gypsum between (10-70) ratios. The main reason for soil problematic is the gypsum dissolution when these soils are inundated. However, the soluble gypsum can be leached out of the soil particles, so these problems can be led to cracking, tilting, and collapsing the related soil structure and changing the soil properties. The aim of this work is to investigate the performance of under-reamed piles as a new, improved method to reduce the moisture sensitive and the primary triggering mechanism for the volume reduction of collapsible soil, which is considered as a non-elastic deformation; this was done by carrying series of inundation these soil with using different types of under reamed piles to arrive the best and suitable type useful in gypseous soils. The piles with reams are concrete piles with one or more ream, so under-reamed piles are suitable in weak soils where sizable ground movement, variations, filed up ground, silty clay, and loose sand which has the advantage to increase the soil strength. This paper includes the experimental model of under-reamed piles under static load simulated by a steel plate on the pile cap, then the load-settlement curve, friction force, and bearing force founded from the investigation of different patterns of reamed. It was found that a number of bulbs had a significant reduction on settlement reach to 93% in case of using triple under-reamed pile which is the greatest results in comparison with other patterns and reference pile of the uniform cross-section in the wet state.


Sign in / Sign up

Export Citation Format

Share Document