The group of isometries of a left invariant Riemannian metric on a Lie group

1976 ◽  
Vol 223 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Takushiro Ochiai ◽  
Tsunero Takahashi
1970 ◽  
Vol 40 ◽  
pp. 67-84
Author(s):  
Yoshihei Hasegawa

The purpose of this paper is to determine left-invariant vector fields on a Lie group G with a left-invariant Riemannian metric which induces C- flows on G.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Takahiro Hashinaga ◽  
Hiroshi Tamaru

In this paper, we define the corresponding submanifolds to left-invariant Riemannian metrics on Lie groups, and study the following question: does a distinguished left-invariant Riemannian metric on a Lie group correspond to a distinguished submanifold? As a result, we prove that the solvsolitons on three-dimensional simply-connected solvable Lie groups are completely characterized by the minimality of the corresponding submanifolds.


2021 ◽  
Vol 127 (1) ◽  
pp. 100-110
Author(s):  
Hamid Reza Salimi Moghaddam

Let $F$ be a left-invariant Randers metric on a simply connected nilpotent Lie group $N$, induced by a left-invariant Riemannian metric $\hat{\boldsymbol{a}}$ and a vector field $X$ which is $I_{\hat{\boldsymbol{a}}}(M)$-invariant. We show that if the Ricci flow equation has a unique solution then, $(N,F)$ is a Ricci soliton if and only if $(N,F)$ is a semialgebraic Ricci soliton.


Author(s):  
Xu Sun ◽  
Peter Topalov

Abstract We define the group of almost periodic diffeomorphisms on $\mathbb{R}^n$ and on an arbitrary Lie group. We then study the properties of its Riemannian and Lie group exponential maps and provide applications to fluid equations. In particular, we show that there exists a geodesic of a weak Riemannian metric on the group of almost periodic diffeomorphisms of the line that consists entirely of conjugate points.


2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


1995 ◽  
Vol 137 ◽  
pp. 33-53 ◽  
Author(s):  
Hiroyuki Tasaki

The theory of integral geometry has mainly treated identities between integral invariants of submanifolds in Riemannian homogeneous spaces like as dμg(g) where M and N are submanifolds in a Riemannian homogeneous spaces of a Lie group G and I(M ∩ gN) is an integral invariant of M ∩ gN. For example Poincaré’s formula is one of typical identities in integral geometry, which is as follows. We denote by M(R2) the identity component of the group of isometries of the plane R2 with a suitable invariant measure μM(R2).


2011 ◽  
Vol 22 (03) ◽  
pp. 399-406
Author(s):  
R. MIRZAIE

We show that the orbit space of Euclidean space, under the action of a closed and connected Lie group of isometries is homeomorphic to a plane or closed half-plane, if the action is of cohomogeneity two.


Author(s):  
Mona Atashafrouz ◽  
Behzad Najafi ◽  
Laurian-Ioan Piscoran

Let $G$ be a 4-dimensional Lie group with an invariant para-hypercomplex structure and let $F= \beta+ a\alpha+\beta^2/{\alpha}$ be a left invariant $(\alpha,\beta)$-metric, where $\alpha$ is a Riemannian metric and $\beta$ is a 1-form on $G$, and $a$ is a real number. We prove that the flag curvature of $F$ with parallel 1-form $\beta$ is non-positive, except in Case 2, in which $F$ admits both negative and positive flag curvature. Then, we determine all geodesic vectors of $(G,F)$.  


2004 ◽  
Vol 13 (03) ◽  
pp. 517-526
Author(s):  
SÉRGIO M. C. V. GONÇALVES

We show that (3+1) Einstein–Maxwell spacetimes admitting a global, spacelike, one-parameter Lie group of isometries of translational type cannot contain apparent horizons. The only assumption made is that of the existence of a global spacelike Killing vector field with infinite open orbits; the four-dimensional spacetime metric is otherwise completely arbitrary. We discuss the implications of this result for the hoop and cosmic censorship conjectures.


Sign in / Sign up

Export Citation Format

Share Document