Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports

1984 ◽  
Vol 11 (1) ◽  
pp. 111-143 ◽  
Author(s):  
I. Hlaváček ◽  
I. Bock ◽  
J. Lovíšek
2011 ◽  
Vol 48 (1) ◽  
pp. 15-24
Author(s):  
Igor Bock ◽  
Mária Kečkemétyová

Abstract We deal with the optimal control problem governed by a hyperbolic variational inequality describing the perpendicular vibrations of a beam clamped on the left end with a rigid obstacle at the right end. A variable thickness of a beam plays the role of a control parameter.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Savin Treanţă

A new class of differential variational inequalities (DVIs), governed by a variational inequality and an evolution equation formulated in infinite-dimensional spaces, is investigated in this paper. More precisely, based on Browder’s result, optimal control theory, measurability of set-valued mappings and the theory of semigroups, we establish that the solution set of DVI is nonempty and compact. In addition, the theoretical developments are accompanied by an application to differential Nash games.


2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.


1979 ◽  
Vol 101 (2) ◽  
pp. 117-126 ◽  
Author(s):  
R. L. DeHoff ◽  
W. Earl Hall

Multivariable control design for turbine engines has been studied for over 20 years. In the last 10 years, the application of linear, optimal design techniques has produced a number of turbine engine controllers. A group of these design procedures is described and a discussion of the procedures’ performance, complexity and implementation is presented. The design of a full-envelope controller for the F100 turbofan engine based on linear, optimal synthesis and locally linear modeling techniques is discussed. A perspective of optimal control design for turbine engines is presented and the future is examined.


Sign in / Sign up

Export Citation Format

Share Document