Structural Analysis and Optimal Design of Lightweight Skate for Loading and Unloading

2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.

2021 ◽  
Vol 26 (2) ◽  
pp. 34
Author(s):  
Isaac Gibert Martínez ◽  
Frederico Afonso ◽  
Simão Rodrigues ◽  
Fernando Lau

The objective of this work is to study the coupling of two efficient optimization techniques, Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively, using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application. These codes are linked by means of a script capable of reading the geometry and pressure distribution obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form Deformation technique is chosen for the definition of the design variables to be used in the ASO, while the densities of the inner elements are defined as design variables of the TO. As a test case, a widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are tested separately to gain insight and then are run in a sequential way for two test cases with available experimental data: (i) Mach 0.729 at α=2.31°; and (ii) Mach 0.730 at α=2.79°. In the ASO problem, the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in order to minimize drag, which resulted in lower stress values experienced by the structure.


Author(s):  
David Guirguis ◽  
Mohamed Aly ◽  
Karim Hamza ◽  
Hesham Hegazi

Level-set methods are domain classification techniques that are gaining popularity in the recent years for structural topology optimization. Level sets classify a domain into two or more categories (such as material and void) by examining the value of a scalar level-set function (LSF) defined in the entire design domain. In most level-set formulations, a large number of design variables, or degrees of freedom is used to define the LSF, which implicitly defines the structure. The large number of design variables makes non-gradient optimization techniques all but ineffective. Kriging-interpolated level sets (KLS) on the other hand are formulated with an objective to enable non-gradient optimization by defining the design variables as the LSF values at few select locations (knot points) and using a Kriging model to interpolate the LSF in the rest of the design domain. A downside of concern when adopting KLS, is that using too few knot points may limit the capability to represent complex shapes, while using too many knot points may cause difficulty for non-gradient optimization. This paper presents a study of the effect of number and layout of the knot points in KLS on the capability to represent complex topologies in single and multi-component structures. Image matching error metrics are employed to assess the degree of mismatch between target topologies and those best-attainable via KLS. Results are presented in a catalogue-style in order to facilitate appropriate selection of knot-points by designers wishing to apply KLS for topology optimization.


2013 ◽  
Vol 2013 ◽  
pp. 1-33 ◽  
Author(s):  
Mehmet Polat Saka ◽  
Zong Woo Geem

The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.


1982 ◽  
Vol 104 (2) ◽  
pp. 339-344 ◽  
Author(s):  
R. B. Bhat ◽  
J. S. Rao ◽  
T. S. Sankar

Optimization techniques are employed to design hydrodynamic bearings for minimum unbalance response of rotors in synchronous whirl. The analysis for the unbalance response considers the effects of direct and cross coupled coefficients of stiffness and damping in the bearings. A parametric study of the unbalance response is carried out to show the influence of bearing parameters on the response and to demonstrate the merits of applying optimization techniques in bearing design. The bearing parameters optimized are the diameter, clearance, and the oil viscosity. In addition to setting upper and lower limits on the foregoing design variables, the Sommerfeld number is also constrained to be within a certain range for the operational speeds of the rotor. The quantity minimized is the maximum unbalance response of the rotor in the operational speed range. Plain cylindrical, grooved, elliptical, and four shoe tilting pad type bearings are considered in the optimal design of the rotor bearing system. The results indicate that an optimal design of hydrodynamic bearings can reduce the unbalance response of rotors.


Author(s):  
Brent R. Bielefeldt ◽  
Darren J. Hartl ◽  
Ergun Akleman

Traditional topology optimization techniques, such as density-based and level set methods, have proven successful in identifying potential design configurations but suffer from rapidly increasing design space dimensionality and convergence to local minima. A heuristic alternative to these approaches couples a genetic algorithm with a Lindenmayer System (L-System), which encodes design variables and governs the development of the structure when coupled with some sort of interpreter. This work discusses the development of a graph-based interpretation scheme referred to as Spatial Interpretation for the Development of Reconfigurable Structures (SPIDRS). This framework allows for the effective exploration of the design space using a limited number of design variables. The theory and implementation of this method are detailed, and a compliant mechanism case study is presented to demonstrate the ability of SPIDRS to generate structures capable of achieving multiple design goals.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Brent R. Bielefeldt ◽  
Ergun Akleman ◽  
Gregory W. Reich ◽  
Philip S. Beran ◽  
Darren J. Hartl

Traditional topology optimization techniques, such as density-based and level set methods, have proven successful in identifying potential design configurations for structures and mechanisms but suffer from rapidly increasing design space dimensionality and the possibility of converging to local minima. A heuristic alternative to these approaches couples a genetic algorithm with a Lindenmayer system (L-system), which encodes design variables and governs the development of the structure when coupled with an interpreter to translate genomic information into structural topologies. This work discusses the development of a graph-based interpretation scheme referred to as spatial interpretation for the development of reconfigurable structures (SPIDRS). This framework allows for the effective exploration of mechanism design spaces using a limited number of design variables. The theory and implementation of this method are detailed, and multiple case studies are presented to demonstrate the ability of SPIDRS to generate adaptive structures capable of achieving multiple design goals.


1991 ◽  
Vol 113 (4) ◽  
pp. 294-299 ◽  
Author(s):  
C. H. Tseng ◽  
K. Y. Kao ◽  
J. C. Yang

In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. The OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these subsystems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected. The numerical optimization method called Sequential Quadratic Programming (SQP) is selected to obtain the optimum results. The main purpose of this paper is to demonstrate the design procedure with the optimization techniques for engineering and economics in the OTEC plant so that anyone else can build upon their models according to their needs.


2012 ◽  
Vol 546-547 ◽  
pp. 66-71
Author(s):  
Huan Gong Wang ◽  
Li Ping Wang ◽  
Li Wen Guan

In the mechanical design process for continuous overload high dynamic flight simulator, a large centrifugal force will be generated, if the arm is very heavy, the motor driving force and energy consumption will be high, so the design objective is minimization of the volume meeting the strength of selected material, this paper established the admissible design domain according to the initial model with the UG. The design variables are the volumetric densities of material in the admissible design domain for the structure. it's very small compared with centrifugal force for gravity, so the influence of gravity is negligible, with the Saint-Venant's principle to simplify constraints. Importing the model into hyperworks software, meshing with hypermesh module, Designing with topology optimization of optistruct module, got the best structure of a flight simulator's arm, and finally designed the actual structure of the arm based on the best structure. Conclusion: topology optimization of the arm flight simulator with hyperworks can reduce design cycle, and reduce weight, resulting in better dynamics.


Sign in / Sign up

Export Citation Format

Share Document