Variational definition of the single-particle potential in the Brueckner-Hartree-Fock approach

1980 ◽  
Vol 294 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Amand Faessler ◽  
T. T. S. Kuo ◽  
H. M�ther
2019 ◽  
Vol 14 (31) ◽  
pp. 28-36
Author(s):  
Ali A. Alzubadi

Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.


2017 ◽  
Vol 13 (2) ◽  
pp. 4678-4688
Author(s):  
K. A. Kharroube

We applied two different approaches to investigate the deformation structures of the two nuclei S32 and Ar36 . In the first approach, we considered these nuclei as being deformed and have axes of symmetry. Accordingly, we calculated their moments of inertia by using the concept of the single-particle Schrödinger fluid as functions of the deformation parameter β. In this case we calculated also the electric quadrupole moments of the two nuclei by applying Nilsson model as functions of β. In the second approach, we used a strongly deformed nonaxial single-particle potential, depending on Î² and the nonaxiality parameter γ , to obtain the single-particle energies and wave functions. Accordingly, we calculated the quadrupole moments of S32 and Ar36 by filling the single-particle states corresponding to the ground- and the first excited states of these nuclei. The moments of inertia of S32 and Ar36 are then calculated by applying the nuclear superfluidity model. The obtained results are in good agreement with the corresponding experimental data.


Sign in / Sign up

Export Citation Format

Share Document