Chiral interaction of sequential lysine polypeptides with methyl orange. Effects of distance between lysine residues and hydrophobic side chains

1986 ◽  
Vol 264 (9) ◽  
pp. 779-785
Author(s):  
H. Yamamoto ◽  
A. Nishida ◽  
T. Hayakawa ◽  
N. Nishi ◽  
R. Yamamoto
Biopolymers ◽  
2000 ◽  
Vol 53 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Sante Capasso ◽  
Gianfranco Balboni ◽  
Paola Di Cerbo
Keyword(s):  

1975 ◽  
Vol 149 (3) ◽  
pp. 497-506 ◽  
Author(s):  
S Doonan ◽  
H J Doonan ◽  
R Hanford ◽  
C A Vernon ◽  
J M Walker ◽  
...  

Carboxymethylated aspartate aminotransferase was digested with a proteinase claimed to be specific for lysine residues. Complete cleavage occurred at 12 of the 19 lysine residues in the protein, but at the remaining seven residues cleavage was either restricted or absent. In addition, cleavage was observed at three of the 26 arginine residues. These results are discussed with reference to the amino acid residues adjacent to points of complete or restricted cleavage. The complete primary structure of aspartate aminotransferase, based on these and other studies, is given. Evidence for the assignment of some acid and amide side chains has been deposited as Supplementary Publication SUP 50050 (11 pp.) at the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1975) 145, 5. The evidence for the assignment of residue 366 was less conclusive than for the other acid and amide side chains and is, therefore, given in the main paper.


1968 ◽  
Vol 35 (1) ◽  
pp. 13-18 ◽  
Author(s):  
R. D. Hill ◽  
Barbara A. Craker

SummaryCoagulation of rennin-treated casein was inhibited by treatment of the casein with dimethylaminonaphthalene sulphonyl chloride. The effect was caused by substitution on lysine side chains of the κ-casein fraction, and inhibition was complete when 2–3 lysine residues/molecule were blocked. This level of substitution did not affect other properties of the κ-casein, such as the release from it of non-protein nitrogen (NPN) by rennin and its ability to stabilize αs-and β-caseins in the presence of Ca++. The evidence suggests that lysine side chains on κ-casein take part in the coagulation of rennin-treated casein.


1983 ◽  
Vol 49 (03) ◽  
pp. 208-213
Author(s):  
A J Osbahr

SummaryThe modification of canine fibrinogen with citraconic anhydride modified the ε-amino groups of the fibrinogen and at the same time generated additional negative charges into the protein. The addition of thrombin to the modified fibrinogen did not induce polymerization; however, the fibrinopeptide was released at a faster rate than from the unmodified fibrinogen. The physical properties of the citraconylated fibrinogen were markedly altered by the modification of 50-60 lysine residues in one hour. A modified fibrinopeptide-A was released by thrombin from the modified fibrinogen and was electrophoretically more anionic than the unmodified fibrinopeptide-A. Edman analysis confirmed the modification of the lysine residue present in the peptide. The rate of removal of citraconylated fibrinopeptide-A from modified fibrinogen by thrombin was 30 to 40 percent greater than the cleavage of unmodified fibrinopeptide-A from unmodified fibrinogen. However, the modification of 60 or more lysine residues in the fibrinogen produced a decrease in the rate of cleavage of citraconylated fibrinopeptide-A. The results suggest that additional negative charge in the vicinity of the attachment of fibrinopeptide-A to canine fibrinogen aids in the removal of the peptide by thrombin.


2015 ◽  
Vol 1 (2) ◽  
pp. 36-41
Author(s):  
Laura Cocheci ◽  
◽  
Ancuta-Corina Marcu ◽  
Paul Barvinschi ◽  
Aniela Pop

2018 ◽  
Vol 14 (2) ◽  
pp. 221-234
Author(s):  
Ahmed Namah Mohamed ◽  
◽  
Jafer Fahdel Odah ◽  
Haider Tawfiq Naeem

2020 ◽  
Author(s):  
Julian Keupp ◽  
Johannes P. Dürholt ◽  
Rochus Schmid

The prototypical pillared layer MOFs, formed by a square lattice of paddle-<br>wheel units and connected by dinitrogen pillars, can undergo a breathing phase<br>transition by a “wine-rack” type motion of the square lattice. We studied this not<br>yet fully understood behavior using an accurate first principles parameterized force<br>field (MOF-FF) for larger nanocrystallites on the example of Zn 2 (bdc) 2 (dabco) [bdc:<br>benzenedicarboxylate, dabco: (1,4-diazabicyclo[2.2.2]octane)] and found clear indi-<br>cations for an interface between a closed and an open pore phase traveling through<br>the system during the phase transformation [Adv. Theory Simul. 2019, 2, 11]. In<br>conventional simulations in small supercells this mechanism is prevented by periodic<br>boundary conditions (PBC), enforcing a synchronous transformation of the entire<br>crystal. Here, we extend this investigation to pillared layer MOFs with flexible<br>side-chains, attached to the linker. Such functionalized (fu-)MOFs are experimen-<br>tally known to have different properties with the side-chains acting as fixed guest<br>molecules. First, in order to extend the parameterization for such flexible groups,<br>1a new parametrization strategy for MOF-FF had to be developed, using a multi-<br>structure force based fit method. The resulting parametrization for a library of<br>fu-MOFs is then validated with respect to a set of reference systems and shows very<br>good accuracy. In the second step, a series of fu-MOFs with increasing side-chain<br>length is studied with respect to the influence of the side-chains on the breathing<br>behavior. For small supercells in PBC a systematic trend of the closed pore volume<br>with the chain length is observed. However, for a nanocrystallite model a distinct<br>interface between a closed and an open pore phase is visible only for the short chain<br>length, whereas for longer chains the interface broadens and a nearly concerted trans-<br>formation is observed. Only by molecular dynamics simulations using accurate force<br>fields such complex phenomena can be studied on a molecular level.


Sign in / Sign up

Export Citation Format

Share Document