Removal of Methyl Orange from Aqueous Solutions by Using Zn-Al Layered Double Hydroxide as Photocatalyst

2015 ◽  
Vol 1 (2) ◽  
pp. 36-41
Author(s):  
Laura Cocheci ◽  
◽  
Ancuta-Corina Marcu ◽  
Paul Barvinschi ◽  
Aniela Pop
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2019 ◽  
Vol 107 (4) ◽  
pp. 299-309
Author(s):  
Shuqi Yu ◽  
Xiangxue Wang ◽  
Shunyan Ning ◽  
Zhongshan Chen ◽  
Xiangke Wang

Abstract The three-dimensional (3D) carbonaceous nanofiber and Ni-Al layered double hydroxide (CNF/LDH) nanocomposite was successfully prepared by a facile one-step hydrothermal methodology. Characterization of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), XRD, and Fourier transformed infrared spectroscopy (FTIR) provided a demonstration that the modified CNF/LDH nanocomposite possessed abundant functional groups, for instance, metal-oxygen surface bonding sites (Ni–O as well as Al–O) and free-metal surface bonding sites (C–O, C–O–C, as well as O–C=O). The elimination of representative radionuclide (i.e. U(VI)) on the CNF/LDH nanocomposite from aqueous solutions was explored as a key function of pH, ionic strength, contact time, reaction temperature as well as radionuclide preliminary concentrations with the use of the batch methodology. As revealed by the findings, the sorption of radionuclides on CNF/LDH nanocomposite adhered to the pseudo-second-order kinetic model as well as Langmuir model. The maximum elimination capacity of U(VI) amounted to be 0.7 mmol/g. The independent of ionic strength shed light on the fact that inner-sphere surface complexation mainly overpowered radionuclide uptake by the CNF/LDH nanocomposite, which was further verified through the combination of FTIR and XPS spectral analyses. The abovementioned analyses shed light on the fact that the CNF/LDH nanocomposite can be regarded as a latent material to preconcentration radionuclides for environmental remediation.


2020 ◽  
Vol 190 ◽  
pp. 105564 ◽  
Author(s):  
Muhammad Altaf Nazir ◽  
Naseem Ahmad Khan ◽  
Chao Cheng ◽  
Syed Shoaib Ahmad Shah ◽  
Tayyaba Najam ◽  
...  

2016 ◽  
Vol 233 ◽  
pp. 133-142 ◽  
Author(s):  
Mary Jenisha Barnabas ◽  
Surendran Parambadath ◽  
Aneesh Mathew ◽  
Sung Soo Park ◽  
Ajayan Vinu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document