Stretching of a fine cylindrical fluid filament having lengthwise viscosity variation

1982 ◽  
Vol 21 (6) ◽  
pp. 730-732 ◽  
Author(s):  
S. Kase

2020 ◽  
Author(s):  
S. Sangeetha ◽  
A. Govindarajan ◽  
E. Sujatha
Keyword(s):  




2013 ◽  
Vol 25 (7) ◽  
pp. 074103 ◽  
Author(s):  
Bernard Meulenbroek ◽  
Rouhollah Farajzadeh ◽  
Hans Bruining


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Fatima Zohra Sebba ◽  
Seghier Ould Kada ◽  
Mohamed Benaicha ◽  
Nerjesse Nemiche

AbstractIn this study, 2-oxopropylmethacrylate-terminated poly(N-vinyl-2- pyrrolidone) is produced by cationic polymerization using HClO4 as an initiator. Termination (end capping) step is accomplished using 2- hydroxypropylmethacrylate (2HPMA) and the polymer product has different chain lengths of molecular weight averages ranging from 672 to 3049 g/mol. The study also synthesised amphipathic graft copolymers having hydrophobic poly(α- methylstyrene) as a backbone chain and hydrophilic poly(N-vinyl-2-pyrrolidone) (PVP) as side chains of various lengths. The copolymer synthesis was accomplished by free radical copolymerization of ω-oxopropylmethacrylate PVP in the presence of α-methyl styrene initiated with benzoyl peroxide. Measurements of the dynamic viscosity of the polymer solution (20% weight of macromonomers in ethanol) show that the viscosity is proportional to the average molecular weights M̅n . However, a reverse behaviour of the viscosity variation with regard to M̅n is observed for graft copolymer samples. The viscosity variation with respect to the graft copolymer mass must be due to steric effects, which are strongly pronounced in grafted copolymer chains. Appearance of the number of side chains attached to poly(α-methylstyrene) backbone reveals that the grafting reaction has occurred with good efficiency.





2018 ◽  
Vol 92 (10) ◽  
pp. 1271-1280 ◽  
Author(s):  
Rashid Mehmood ◽  
R. Tabassum


2019 ◽  
Vol 879 ◽  
pp. 808-833 ◽  
Author(s):  
B. J. Walker ◽  
K. Ishimoto ◽  
H. Gadêlha ◽  
E. A. Gaffney

We present a generalisation of efficient numerical frameworks for modelling fluid–filament interactions via the discretisation of a recently developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile$9+2$cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid–structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.



Author(s):  
Hao Ran Geng ◽  
Chun Jing Sun ◽  
Guang Li Chen ◽  
Lei Lei Ji
Keyword(s):  


2019 ◽  
Vol 71 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Pentyala Srinivasa Rao ◽  
Amit Kumar Rahul

Purpose This paper aims to investigate the effect of surface roughness (radial and azimuthal) and viscosity variation on a squeeze film of a conical bearing with a non-Newtonian lubricant by using Rabinowitsch fluid model. Design/methodology/approach The main objective is to determine the stochastic nonlinear modified Reynolds equation for rough conical bearing. Later, first-order closed-form solutions are obtained using a small perturbation method and are numerically solved using the Gauss quadrature method. Findings The findings of this paper, numerical calculations, are analyzed for pressure, load carrying capacity and response time. The simulated results indicate that the influence of surface roughness increases the pressure, load carrying capacity and response time, whereas the viscosity variation factor decreases the pressure, load and response time. Originality/value According to both types of surface roughness with viscosity variation, the performance of a squeeze film rough conical bearing was improved by using Rabinowitsch fluid model. As it is inevitable to consider viscosity variation for bearing designer, it leads to a long life period of conical bearing.



Sign in / Sign up

Export Citation Format

Share Document