Localization of human U1 small nuclear RNA genes to band p36.3 of chromosome 1 by in situ hybridization

1984 ◽  
Vol 10 (3) ◽  
pp. 307-313 ◽  
Author(s):  
S. L. Naylor ◽  
B. U. Zabel ◽  
T. Manser ◽  
R. Gesteland ◽  
A. Y. Sakaguchi
1985 ◽  
Vol 5 (9) ◽  
pp. 2172-2180 ◽  
Author(s):  
V Lindgren ◽  
L B Bernstein ◽  
A M Weiner ◽  
U Francke

Human U1 small nuclear RNA is encoded by approximately 30 gene copies. All of the U1 genes share several kilobases of essentially perfect flanking homology both upstream and downstream from the U1 coding region, but remarkably, for many U1 genes excellent flanking homology extends at least 24 kilobases upstream and 20 kilobases downstream. Class I U1 RNA pseudogenes are abundant in the human genome. These pseudogenes contain a complete but imperfect U1 coding region and possess extensive flanking homology to the true U1 genes. We mapped four class I pseudogenes by in situ hybridization to the long arm of chromosome 1, bands q12-q22, a region distinct from the site on the distal short arm of chromosome 1 to which the U1 genes have been previously mapped (Lund et al., Mol. Cell. Biol. 3:2211-2220, 1983; Naylor et al., Somat. Cell Mol. Genet. 10:307-313, 1984). We confirmed our in situ hybridization results by genomic blotting experiments with somatic cell hybrid lines with translocation products of human chromosome 1. These experiments provide further evidence that class I U1 pseudogenes and the true U1 genes are not interspersed. The results, along with those published elsewhere (Bernstein et al., Mol. Cell. Biol. 5:2159-2171, 1985), suggest that gene amplification may be responsible for the sequence homogeneity of the human U1 gene family.


1985 ◽  
Vol 5 (9) ◽  
pp. 2172-2180 ◽  
Author(s):  
V Lindgren ◽  
L B Bernstein ◽  
A M Weiner ◽  
U Francke

Human U1 small nuclear RNA is encoded by approximately 30 gene copies. All of the U1 genes share several kilobases of essentially perfect flanking homology both upstream and downstream from the U1 coding region, but remarkably, for many U1 genes excellent flanking homology extends at least 24 kilobases upstream and 20 kilobases downstream. Class I U1 RNA pseudogenes are abundant in the human genome. These pseudogenes contain a complete but imperfect U1 coding region and possess extensive flanking homology to the true U1 genes. We mapped four class I pseudogenes by in situ hybridization to the long arm of chromosome 1, bands q12-q22, a region distinct from the site on the distal short arm of chromosome 1 to which the U1 genes have been previously mapped (Lund et al., Mol. Cell. Biol. 3:2211-2220, 1983; Naylor et al., Somat. Cell Mol. Genet. 10:307-313, 1984). We confirmed our in situ hybridization results by genomic blotting experiments with somatic cell hybrid lines with translocation products of human chromosome 1. These experiments provide further evidence that class I U1 pseudogenes and the true U1 genes are not interspersed. The results, along with those published elsewhere (Bernstein et al., Mol. Cell. Biol. 5:2159-2171, 1985), suggest that gene amplification may be responsible for the sequence homogeneity of the human U1 gene family.


1995 ◽  
Vol 108 (7) ◽  
pp. 2565-2572 ◽  
Author(s):  
R.W. Dirks ◽  
K.C. Daniel ◽  
A.K. Raap

Genes for Epstein-Barr virus, human cytomegalovirus immediate early antigen and luciferase are abundantly transcribed in Namalwa, rat 9G and X1 cells, respectively. The EBV transcripts and HCMV-IE transcripts are extensively spliced, while in the luciferase transcript only a small intron sequence has to be spliced out. EBV transcripts are hardly localized in the cytoplasm while the luciferase and HCMV-IE transcripts are present in the cytoplasm and translated into proteins. We have correlated these characteristics with nuclear RNA distribution patterns as seen by fluorescence in situ hybridization. Transcripts of the HCMV-IE transcription unit were shown to be present in a main nuclear signal in the form of a track or elongated dot and as small nuclear RNA signals that radiate from this site towards the cytoplasm. A similar distribution pattern of small RNA signals was observed for transcripts of the luciferase gene, whereas the main nuclear signal was always observed as a dot and never as a track or elongated dot. In Namalwa cells, EBV transcripts were only present as track-like signals. The results suggest that when the extent for splicing is high, unspliced or partially spliced mRNAs begin to occupy elongated dot or track-like domains in the vicinity of the gene. When the extent of splicing is low, splicing is completed co-transcriptionally, leading to a bright dot-like signal. The presence of small nuclear spots in addition to the main signal correlates with cytoplasmic mRNA expression. The small spots most likely represent, therefore, mRNAs in transport to the cytoplasm.


1983 ◽  
Vol 3 (12) ◽  
pp. 2211-2220
Author(s):  
E Lund ◽  
C Bostock ◽  
M Robertson ◽  
S Christie ◽  
J L Mitchen ◽  
...  

The majority, and perhaps all, of the genes for human U1 small nuclear RNA (U1 RNA) were shown to be located on the short arm of human chromosome 1. These genes were mapped by Southern blot analysis of DNA from rodent-human somatic cell hybrids, using the 5' region of a human U1 RNA gene as a human-specific probe. This probe hybridized to DNA fragments present only in digests of total human DNA or to the DNAs of cell lines which contained human chromosome 1. The major families of human U1 RNA genes were identified, but some human genes may have gone undetected. Also, the presence of a few U1 RNA genes on human chromosome 19 could not be ruled out. In spite of the lack of extensive 5'-flanking-region homology between the human and mouse U1 RNA genes, the genes of both species were efficiently transcribed in the hybrid cells, and the U1 RNAs of both species were incorporated into specific ribonucleoprotein particles.


1983 ◽  
Vol 3 (12) ◽  
pp. 2211-2220 ◽  
Author(s):  
E Lund ◽  
C Bostock ◽  
M Robertson ◽  
S Christie ◽  
J L Mitchen ◽  
...  

The majority, and perhaps all, of the genes for human U1 small nuclear RNA (U1 RNA) were shown to be located on the short arm of human chromosome 1. These genes were mapped by Southern blot analysis of DNA from rodent-human somatic cell hybrids, using the 5' region of a human U1 RNA gene as a human-specific probe. This probe hybridized to DNA fragments present only in digests of total human DNA or to the DNAs of cell lines which contained human chromosome 1. The major families of human U1 RNA genes were identified, but some human genes may have gone undetected. Also, the presence of a few U1 RNA genes on human chromosome 19 could not be ruled out. In spite of the lack of extensive 5'-flanking-region homology between the human and mouse U1 RNA genes, the genes of both species were efficiently transcribed in the hybrid cells, and the U1 RNAs of both species were incorporated into specific ribonucleoprotein particles.


1994 ◽  
Vol 107 (2) ◽  
pp. 463-475 ◽  
Author(s):  
M.C. Azum-Gelade ◽  
J. Noaillac-Depeyre ◽  
M. Caizergues-Ferrer ◽  
N. Gas

The distribution of the U3 small nuclear RNA during the cell cycle of the CHO cell line was studied by in situ hybridization using digoxigenin-labelled oligonucleotide probes. The location of the hybrids by immunofluorescence microscopy and at the ultrastructural level was correlated with the distribution of two nucleolar proteins, nucleolin and fibrillarin. The U3 snRNA molecules persist throughout mitosis in close association with the nucleolar remnant. U3 snRNA is present in the prenucleolar bodies (PNBs) and could participate in nucleologenesis in association with several nucleolar proteins such as nucleolin and fibrillarin. The interaction of U3 snRNP with the 5′ external spacer of pre-RNA newly synthesized by active NORs is proposed to be the promoting event of nucleologenesis.


2007 ◽  
Vol 49 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Xia Li ◽  
Dan-Hua Jiang ◽  
Kelan Yong ◽  
Da-Bing Zhang

Genome ◽  
1994 ◽  
Vol 37 (6) ◽  
pp. 1018-1021 ◽  
Author(s):  
M. Nenno ◽  
K. Schumann ◽  
W. Nagl

This is the first report of fluorescence in situ hybridization (FISH) on plant polytene chromosomes. Different protease pretreatments have been tested to improve fluorescence in situ hybridization FISH on polytene chromosomes of a plant, Phaseolus coccineus, with the aim to enable the detection of low-copy genes. The structural preservation of the chromosomes and the distinctness of the FISH signals were comparatively analysed with a probe for the ribosomal RNA genes after digestion with pepsin and trypsin. The pepsin pretreatment resulted in a general loosening of chromatin with good conservation of chromosome morphology and an increased number and density of signal points. The six nucleolus organizers exhibited significant differences in condensation. The pretreatment with pepsin enabled the detection of the low-copy genes encoding the seed storage protein phaseolin.Key words: plant, Leguminosae, ribosomal RNA genes, seed storage protein genes, protease.


Genome ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 184-195 ◽  
Author(s):  
Robert T. Gaeta ◽  
Tatiana V. Danilova ◽  
Changzeng Zhao ◽  
Rick E. Masonbrink ◽  
Morgan E. McCaw ◽  
...  

Maize-engineered minichromosomes are easily recovered from telomere-truncated B chromosomes but are rarely recovered from A chromosomes. B chromosomes lack known genes, and their truncation products are tolerated and transmitted during meiosis. In contrast, deficiency gametes resulting from truncated A chromosomes prevent their transmission. We report here a de novo compensating translocation that permitted recovery of a large truncation of chromosome 1 in maize. The truncation (trunc-1) and translocation with chromosome 6 (super-6) occurred during telomere-mediated truncation experiments and were characterized using single-gene fluorescent in situ hybridization (FISH) probes. The truncation contained a transgene signal near the end of the broken chromosome and transmitted together with the compensating translocation as a heterozygote to approximately 41%–55% of progeny. Transmission as an addition chromosome occurred in ~15% of progeny. Neither chromosome transmitted through pollen. Transgene expression (Bar) cosegregated with trunc-1 transcriptionally and phenotypically. Meiosis in T1 plants revealed eight bivalents and one tetravalent chain composed of chromosome 1, trunc-1, chromosome 6, and super-6 in diplotene and diakinesis. Our data suggest that de novo compensating translocations allow recovery of truncated A chromosomes by compensating deficiency in female gametes and by affecting chromosome pairing and segregation. The truncated chromosome can be maintained as an extra chromosome or together with the super-6 as a heterozygote.


1986 ◽  
Vol 6 (11) ◽  
pp. 3910-3919 ◽  
Author(s):  
M L Hoffman ◽  
G M Korf ◽  
K J McNamara ◽  
W E Stumph

Two distinct chicken U4 RNA genes have been cloned and characterized. They are closely linked within 465 base pairs of each other and have the same transcriptional orientation. The downstream U4 homology is a true gene, based on the criteria that it is colinear with chicken U4B RNA and is expressed when injected into Xenopus laevis oocytes. The upstream U4 homology, however, contains seven base substitutions relative to U4B RNA. This sequence may be a nonexpressed pseudogene, but the pattern of base substitutions suggests that it more probably encodes a variant yet functional U4 RNA product not yet characterized at the RNA level. In support of this, the two U4 genes have regions of homology with each other in their 5'-flanking DNA at two positions known to be essential for the efficient expression of vertebrate U1 and U2 small nuclear RNA genes. In the case of U1 and U2 RNA genes, the more distal region (located near position-200 with respect to the RNA cap site) is known to function as a transcriptional enhancer. Although this region is highly conserved in overall structure and sequence among U1 and U2 RNA genes, it is much less conserved in the chicken U4 RNA genes reported here. Interestingly, short sequence elements present in the -200 region of the U4 RNA genes are inverted (i.e., on the complementary strand) relative to their usual orientation upstream of U1 and U2 RNA genes. Thus, the -200 region of the U4 RNA genes may represent a natural evolutionary occurrence of an enhancer sequence inversion.


Sign in / Sign up

Export Citation Format

Share Document