Asymptotic stability and other properties of trajectories and transfer sequences leading to the bargaining sets

1975 ◽  
Vol 4 (4) ◽  
pp. 193-213 ◽  
Author(s):  
G. Kalai ◽  
M. Maschler ◽  
G. Owen
2015 ◽  
Vol 17 (04) ◽  
pp. 1550008 ◽  
Author(s):  
Bezalel Peleg ◽  
Peter Sudhölter

We show that the Aumann–Davis–Maschler bargaining set and the Mas-Colell bargaining set of a non-leveled NTU game that is either ordinal convex or coalition merge convex coincides with the core of the game. Moreover, we show by means of an example that the foregoing statement may not be valid if the NTU game is marginal convex.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 102-115
Author(s):  
Wenhui Si ◽  
Lingyan Zhao ◽  
Jianping Wei ◽  
Zhiguang Guan

Extensive research efforts have been made to address the motion control of rigid-link electrically-driven (RLED) robots in literature. However, most existing results were designed in joint space and need to be converted to task space as more and more control tasks are defined in their operational space. In this work, the direct task-space regulation of RLED robots with uncertain kinematics is studied by using neural networks (NN) technique. Radial basis function (RBF) neural networks are used to estimate complicated and calibration heavy robot kinematics and dynamics. The NN weights are updated on-line through two adaptation laws without the necessity of off-line training. Compared with most existing NN-based robot control results, the novelty of the proposed method lies in that asymptotic stability of the overall system can be achieved instead of just uniformly ultimately bounded (UUB) stability. Moreover, the proposed control method can tolerate not only the actuator dynamics uncertainty but also the uncertainty in robot kinematics by adopting an adaptive Jacobian matrix. The asymptotic stability of the overall system is proven rigorously through Lyapunov analysis. Numerical studies have been carried out to verify efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document