Stability of solutions of generalized logistic difference equations

1995 ◽  
Vol 69 (1-2) ◽  
pp. 127-134
Author(s):  
W. Briden ◽  
S. Zhang
2006 ◽  
Vol 6 (3) ◽  
pp. 269-290 ◽  
Author(s):  
B. S. Jovanović ◽  
S. V. Lemeshevsky ◽  
P. P. Matus ◽  
P. N. Vabishchevich

Abstract Estimates of stability in the sense perturbation of the operator for solving first- and second-order differential-operator equations have been obtained. For two- and three-level operator-difference schemes with weights similar estimates hold. Using the results obtained, we construct estimates of the coefficient stability for onedimensional parabolic and hyperbolic equations as well as for the difference schemes approximating the corresponding differential problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Shihuang Hong ◽  
Jing Gao ◽  
Yingzi Peng

A class of new nonlinear impulsive set dynamic equations is considered based on a new generalized derivative of set-valued functions developed on time scales in this paper. Some novel criteria are established for the existence and stability of solutions of such model. The approaches generalize and incorporate as special cases many known results for set (or fuzzy) differential equations and difference equations when the time scale is the set of the real numbers or the integers, respectively. Finally, some examples show the applicability of our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Fulai Chen ◽  
Zhigang Liu

We present some results for the asymptotic stability of solutions for nonlinear fractional difference equations involvingRiemann-Liouville-likedifference operator. The results are obtained by using Krasnoselskii's fixed point theorem and discrete Arzela-Ascoli's theorem. Three examples are also provided to illustrate our main results.


2008 ◽  
Vol 2008 (1) ◽  
pp. 238068 ◽  
Author(s):  
Taixiang Sun ◽  
Hongjian Xi ◽  
Caihong Han

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1754
Author(s):  
Noureddine Djenina ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi ◽  
Viet-Thanh Pham

To follow up on the progress made on exploring the stability investigation of linear commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that appears with incommensurate orders is discussed and examined in this work. Some simple applicable conditions for judging the stability of these systems are reported as novel results. These results are formulated by converting the linear incommensurate FoDS into another equivalent system consists of fractional-order difference equations of Volterra convolution-type as well as by using some properties of the Z-transform method. All results of this work are verified numerically by illustrating some examples that deal with the stability of solutions of such systems.


Sign in / Sign up

Export Citation Format

Share Document