The measurement statistics interpretation of quantum mechanics: Possible values and possible measurement results of physical quantities

1989 ◽  
Vol 19 (7) ◽  
pp. 873-890 ◽  
Author(s):  
Gianni Cassinelli ◽  
Pekka J. Lahti
2021 ◽  
Vol 35 (04) ◽  
pp. 2150072
Author(s):  
Michael E. McCulloch ◽  
Jaume Giné

The EPR paradox appears when measurement results of some properties of two distantly entangled particles are correlated in a way that cannot be explained classically, and apparently violate locality. The resolution of the paradox depends on one’s interpretation of quantum mechanics. Explanations from quantum mechanics remain commonplace today, but they fail to explain the EPR (Einstein, Podolsky and Rosen) paradox totally in a way than can be accepted by the whole community. Here, we present a simple resolution to this paradox in which the uncertainty in the energy of the two-particle system is reduced by its lack of interaction during the journey so that the uncertainty in time becomes greater than the time they have been separating. Consequently, the present and past become indistinguishable because when we measure an observable in the system its value is the same as if the two particle were still together or very close. It is also argued that the destruction of information as the present and past become identical should release heat by Landauer’s principle, and this might make this proposal testable.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Nikki Weststeijn

AbstractRelational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the observer, there is no inconsistency in the descriptions of the observers. Federico Laudisa has recently argued, however, that Rovelli’s description of Wigner’s friend is ambiguous, because it does not take into account the correlation between the observer and the quantum system. He argues that if this correlation is taken into account, the problem with Wigner’s friend disappears and, therefore, a relativization of quantum states is not necessary. I will show that Laudisa’s criticism is not justified. To the extent that the correlation can be accurately reflected, the problem of Wigner’s friend remains. An interpretation of quantum mechanics that provides a solution to it, like Relational Quantum Mechanics, is therefore a welcome one.


2019 ◽  
Author(s):  
Muhammad Ali

This paper proposes a Gadenkan experiment named “Observer’s Dilemma”, to investigate the probabilistic nature of observable phenomena. It has been reasoned that probabilistic nature in, otherwise uniquely deterministic phenomena can be introduced due to lack of information of underlying governing laws. Through theoretical consequences of the experiment, concepts of ‘Absolute Complete’ and ‘Observably Complete” theories have been introduced. Furthermore, nature of reality being ‘absolute’ and ‘observable’ have been discussed along with the possibility of multiple realities being true for observer. In addition, certain aspects of quantum mechanics have been interpreted. It has been argued that quantum mechanics is an ‘observably complete’ theory and its nature is to give probabilistic predictions. Lastly, it has been argued that “Everettian - Many world” interpretation of quantum mechanics is very real and true in the framework of ‘observable nature of reality’, for humans.


1984 ◽  
Vol 52 (3) ◽  
pp. 273-273
Author(s):  
Ishwar Singh ◽  
M. A. B. Whitaker

Sign in / Sign up

Export Citation Format

Share Document