Susceptibility toFusarium culmorum (W.G.Sm.)Sacc. in wheat (Triticum aestivum L.) substitution lines

Euphytica ◽  
1970 ◽  
Vol 19 (2) ◽  
pp. 190-193
Author(s):  
W. J. Whittington ◽  
S. D. Feakin
1982 ◽  
Vol 24 (2) ◽  
pp. 227-233 ◽  
Author(s):  
George Fedak ◽  
Perry Y. Jui

Chromosome substitution lines of the variety Hope in Chinese Spring (Triticum aestivum L.) were crossed onto Betzes barley (Hordeum vulgare L. emend. Lam.). Three substitution lines of Hope involving chromosomes 5A, 5B, 5D gave no seed-set indicating that their counterparts in Chinese Spring were responsible for crossability with barley and that they function in complementary fashion. Other chromosomes of Hope had minor effects on crossability with barley.


1986 ◽  
Vol 28 (6) ◽  
pp. 991-997 ◽  
Author(s):  
D. W. A. Roberts

'Rescue', 'Cadet', and the 42 reciprocal chromosome substitution lines derived from these two spring wheat cultivars were tested for vernalization response and cold hardiness. Cold hardiness was tested after hardening under a 16-h day for 8 weeks with 6 °C day and 4 °C night temperatures or in the dark for 7 weeks at 0.8 °C followed by 8 weeks at −5 °C. Chromosomes 5A, 5B, 7B, and possibly 2A carried loci for vernalization response. Chromosomes 2A, 5A, and 5B carried loci affecting cold hardiness measured after 8 weeks in the light at 6 °C during the day and 4 °C at night, whereas chromosomes 6A, 3B, 5B, and 5D were involved in cold hardiness after hardening in the dark at 0.8 °C followed by −5 °C. The results suggest that the rank order of cultivars for cold hardiness depends on the hardening technique used since the two different techniques tested had different genetic and presumably somewhat different biochemical bases.Key words: Triticum aestivum L., cold hardiness, vernalization.


2000 ◽  
Vol 101 (1-2) ◽  
pp. 95-99 ◽  
Author(s):  
E. Pestsova ◽  
E. Salina ◽  
A. Börner ◽  
V. Korzun ◽  
O. I. Maystrenko ◽  
...  

Genome ◽  
1995 ◽  
Vol 38 (1) ◽  
pp. 158-165 ◽  
Author(s):  
M. Ghaemi ◽  
A. Sarrafi ◽  
R. Morris

Reciprocal substitutions for all chromosomes between the hard red winter wheat cultivars Wichita and Cheyenne were used to investigate the effects of individual chromosomes, as well as their interactions with the genetic background, on androgenesis. Duplicate lines for each chromosome were included to check background homogeneity. Six experiments, two for each genome, were performed. In each experiment, 14 substitution lines, their 14 duplicate lines, and the two parental genotypes ('Cheyenne' and 'Wichita') were studied. The experimental design was a randomized block with three replications. 'Wichita' and 'Cheyenne' differed significantly in embryo yield and green plant regeneration (except green plant regeneration for the B-genome tests) and were equal for albino and total plant regeneration. Embryogenesis was influenced by some chromosomes of the A, B, and D genomes; green plant production was influenced by all chromosomes of the A and D genomes except 5D; albino and total plant regeneration were affected by some chromosomes of the B and D genomes. Reciprocal effects were obtained with chromosomes 1A, 7A, 1B, 5B, 1D, and 2D for embryogenesis, chromosomes 2D and 7D for green plant regeneration, and chromosome 2D for total plant regeneration. Reciprocal substitution lines revealed reciprocal effects of homologous chromosomes, as well as interactions between substituted chromosomes and their specific genetic background.Key words: anther culture, reciprocal effect, substitution lines, Triticum aestivum, embryogenesis.


2013 ◽  
Vol 35 (8) ◽  
pp. 2455-2465 ◽  
Author(s):  
Svetlana V. Osipova ◽  
Aleksey V. Permyakov ◽  
Marina D. Permyakova ◽  
Tatyana A. Pshenichnikova ◽  
Mikhail A. Genaev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document