scholarly journals Effects of alien substitutions of chromosomes of homoeologous group 7 on the heading time of wheat–barley substitution lines (Triticum aestivum L. – Hordeum marinum ssp. gussoneanum 4x Hudson)

2019 ◽  
Vol 47 (1) ◽  
pp. 11-21
Author(s):  
E.V. Chumanova ◽  
T.T. Efremova ◽  
N.V. Trubacheeva ◽  
L.A. Pershina
Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 729-734 ◽  
Author(s):  
R C Leach ◽  
I S Dundas ◽  
A Houben

The physical length of the rye segment of a 4BS.4BL–5RL translocation derived from the Cornell Wheat Selection 82a1-2-4-7 in a Triticum aestivum 'Chinese Spring' background was measured using genomic in situ hybridization (GISH) and found to be 16% of the long arm. The size of this translocation was similar to previously published GISH measurements of another 4BS.4BL–5RL translocation in a Triticum aestivum 'Viking' wheat background. Molecular maps of both 4BS.4BL–5RL translocations for 2 different wheat backgrounds were developed using RFLP analysis. The locations of the translocation breakpoints of the 2 4BS.4BL–5RL translocations were similar even though they arose in different populations. This suggests a unique property of the region at or near the translocation breakpoint that could be associated with their similarity and spontaneous formation. These segments of rye chromosome 5 also contain a gene for copper efficiency that improves the wheat's ability to cope with low-copper soils. Genetic markers in these maps can also be used to screen for copper efficiency in bread wheat lines derived from the Cornell Wheat Selection 82a1 2-4-7.Key words: Triticum aestivum, wheat–rye translocation, homoeologous group 4, homoeologous group 5, GISH, comparative map, copper efficiency, hairy peduncle.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Celso L. Marino ◽  
Neal A. Tuleen ◽  
Gary E. Hart ◽  
James C. Nelson ◽  
Mark E. Sorrells ◽  
...  

Restriction fragment length polymorphism (RFLP) maps of chromosomes 6A, 6B, and 6D of hexaploid wheat (Triticum aestivum L. em. Thell.) have been produced. They were constructed using a population of F7–8 recombinant inbred lines derived from a synthetic wheat × bread wheat cross. The maps consist of 74 markers assigned to map positions at a LOD ≥ 3 (29 markers assigned to 6A, 24 to 6B, and 21 to 6D) and 2 markers assigned to 6D ordered at a LOD of 2.7. Another 78 markers were assigned to intervals on the maps. The maps of 6A, 6B, and 6D span 178, 132, and 206 cM, respectively. Twenty-one clones detected orthologous loci in two homoeologues and 3 detected an orthologous locus in each chromosome. Orthologous loci are located at intervals of from 1.5 to 26 cM throughout 70% of the length of the linkage maps. Within this portion of the maps, colinearity (homosequentiality) among the three homoeologues is strongly indicated. The remainder of the linkage maps consists of three segments ranging in length from 47 to 60 cM. Colinearity among these chromosomes and other Triticeae homoeologous group 6 chromosomes is indicated and a consensus RFLP map derived from maps of the homoeologous group 6 chromosomes of hexaploid wheat, tetraploid wheat, Triticum tauschii, and barley is presented. Key words : RFLP, wheat, linkage maps, molecular markers.


1980 ◽  
Vol 22 (2) ◽  
pp. 237-259 ◽  
Author(s):  
J. Dvořák

Genetic compensation of Agropyron chromosomes for wheat chromosomes in the male gametophyte and compensation of Agropyron chromosomes for wheat chromosomes in disomic substitutions were used to investigate relationships between the chromosomes of Agropyron elongatum (Host.) P.B. (2n = 2x = 14) and Triticum aestivum L. emend. Thell. (2n = 6x = 42). Gametophytic compensation indicated that A. elongatum chromosomes I, II, III, IV, and VII were related to wheat chromosomes of homoeologous groups 1, 7, 4, 3, and 6, respectively, and were designated 1E, 7E, 4E, 3E, and 6E. Chromosomes V and VI appeared to be related to homoeologous group 2. Other analyses showed that chromosomes V and VI originated from arm exchanges between chromosome 2E and other Agropyron chromosomes. An unaltered disome of Agropyron chromosome 2E was added to the wheat chromosome complement. In the disomic substitutions Agropyron chromosomes 1E, 6E, and 7E compensated for all three wheat homoeologues of the respective homoeologous groups. Chromosome 4E fully compensated for chromosome 4D but only partially for chromosomes 4A and 4B. Chromosomes V and VI compensated poorly or not at all for wheat chromosomes of group 2.


Sign in / Sign up

Export Citation Format

Share Document