Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces

1986 ◽  
Vol 47 (1-2) ◽  
pp. 95-107
Author(s):  
S. Salerno ◽  
M. Troisi
2003 ◽  
Vol 13 (07) ◽  
pp. 1053-1080 ◽  
Author(s):  
A.-M. Matache ◽  
J. M. Melenk

Elliptic problems on unbounded domains with periodic coefficients and geometries are analyzed and two-scale regularity results for the solution are given. These are based on a detailed analysis in weighted Sobolev spaces of the so-called unit-cell problem in which the critical parameters (the period ε, the wave number t, and the differentiation order) enter explicitly.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Serena Boccia ◽  
Sara Monsurrò ◽  
Maria Transirico

We study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of , . We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.


2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Serena Boccia ◽  
Maria Salvato ◽  
Maria Transirico

AbstractThis paper deals with the Dirichlet problem for second order linear elliptic equations in unbounded domains of the plane in weighted Sobolev spaces. We prove an a priori bound and an existence and uniqueness result.


2002 ◽  
Vol 2 (3) ◽  
Author(s):  
Pablo L. De Nápoli ◽  
M. Cristina Mariani

AbstractThis work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Sara Monsurrò ◽  
Maria Salvato ◽  
Maria Transirico

We obtain some a priori bounds for a class of uniformly elliptic second-order differential operators, both in a no-weighted and in a weighted case. We deduce a uniqueness and existence theorem for the related Dirichlet problem in some weighted Sobolev spaces on unbounded domains.


Sign in / Sign up

Export Citation Format

Share Document