Equations of p-Laplacian Type in Unbounded Domains

2002 ◽  
Vol 2 (3) ◽  
Author(s):  
Pablo L. De Nápoli ◽  
M. Cristina Mariani

AbstractThis work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.

Filomat ◽  
2018 ◽  
Vol 32 (7) ◽  
pp. 2465-2481 ◽  
Author(s):  
Jianhua Chen ◽  
Xianjiu Huang ◽  
Bitao Cheng ◽  
Huxiao Luo

We investigate the existence of nontrivial solutions and multiple solutions for the following class of elliptic equations (-?u + V(x)u = K(x)f(u), x ? RN, u ? D1,2(RN), where N ? 3, V(x) and K(x) are both unbounded potential functions and f is a function with a superquadratic growth. Firstly, we prove the existence of infinitely many solutions with compact embedding and by means of symmetric mountain pass theorem. Moreover, we prove the existence of nontrivial solutions without compact embedding in weighted Sobolev spaces and by means of mountain pass theorem. Our results extend and generalize some existing results.


2017 ◽  
Vol 8 (3) ◽  
Author(s):  
EL Miloud Hssini ◽  
Najib Tsouli ◽  
Mustapha Haddaoui

AbstractIn this paper, based on the mountain pass theorem and Ekeland’s variational principle, we show the existence of solutions for a class of non-homogeneous and nonlocal problems in Orlicz–Sobolev spaces.


2019 ◽  
Vol 38 (4) ◽  
pp. 31-50
Author(s):  
M. Bagheri ◽  
Ghasem A. Afrouzi

In this paper, we are concerned with the existence of solutions for fourth-order Kirchhoff type elliptic problems with Hardy potential. In fact, employing a consequence of the local minimum theorem due to Bonanno and mountain pass theorem we look into the existence results for the problem under algebraic conditions with the classical Ambrosetti-Rabinowitz (AR) condition on the nonlinear term. Furthermore, by combining two algebraic conditions on the nonlinear term using two consequences of the local minimum theorem due to Bonanno we ensure the existence of two solutions, applying the mountain pass theorem given by Pucci and Serrin we establish the existence of third solution for our problem.


2015 ◽  
Vol 4 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Ziheng Zhang ◽  
Rong Yuan

AbstractIn this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form ${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t))$, where ${\alpha \in (\frac{1}{2},1)}$, ${t\in \mathbb {R}}$, ${u\in \mathbb {R}^n}$, ${L\in C(\mathbb {R},\mathbb {R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in \mathbb {R}}$, ${W\in C^1(\mathbb {R}\times \mathbb {R}^n,\mathbb {R})}$ and ${\nabla W(t,u)}$ is the gradient of ${W(t,u)}$ at u. The novelty of this paper is that, assuming L(t) is bounded in the sense that there are constants ${0<\tau _1<\tau _2< \infty }$ such that ${\tau _1 |u|^2\le (L(t)u,u)\le \tau _2 |u|^2}$ for all ${(t,u)\in \mathbb {R}\times \mathbb {R}^n}$ and ${W(t,u)}$ is of the form ${({a(t)}/({p+1}))|u|^{p+1}}$ such that ${a\in L^{\infty }(\mathbb {R},\mathbb {R})}$ can change its sign and ${0<p<1}$ is a constant, we show that the above fractional Hamiltonian systems possess infinitely-many solutions. The proof is based on the symmetric mountain pass theorem. Recent results in the literature are generalized and significantly improved.


2012 ◽  
Vol 31 (1) ◽  
pp. 179 ◽  
Author(s):  
Abdel Rachid El Amrouss ◽  
Anass Ourraoui

In this paper, we establish the existence of at least three solutions to a boundary problem involving the p(x)-biharmonic operator. Our technical approach is based on theorem obtained by B. Ricceri's variational principale and local mountain pass theorem without (Palais.Smale) condition.


2010 ◽  
Vol 20 (01) ◽  
pp. 95-120 ◽  
Author(s):  
RICARDO G. DURÁN ◽  
FERNANDO LÓPEZ GARCÍA

If Ω ⊂ ℝn is a bounded domain, the existence of solutions [Formula: see text] of div u = f for f ∈ L2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution [Formula: see text], where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution [Formula: see text] for some r < 2 depending on the power of the cusp.


2021 ◽  
pp. 1-12
Author(s):  
João R. Santos ◽  
Gaetano Siciliano

We consider a boundary value problem in a bounded domain involving a degenerate operator of the form L ( u ) = − div ( a ( x ) ∇ u ) and a suitable nonlinearity f. The function a vanishes on smooth 1-codimensional submanifolds of Ω where it is not allowed to be C 2 . By using weighted Sobolev spaces we are still able to find existence of solutions which vanish, in the trace sense, on the set where a vanishes.


2021 ◽  
Vol 2 (1) ◽  
pp. 458-466
Author(s):  
Milton M. Cortez Gutiérrez ◽  
Hernan O. Cortez Gutiérrez ◽  
Girady I. Cortez Fuentes Rivera ◽  
Liv J. Cortez Fuentes Rivera ◽  
Deolinda E. Fuentes Rivera Vallejo

Sign in / Sign up

Export Citation Format

Share Document