Limit equilibrium of reinforced shells of zero gaussian curvature

1989 ◽  
Vol 25 (9) ◽  
pp. 913-919
Author(s):  
A. V. Nalimov ◽  
Yu. V. Nemirovskii
1995 ◽  
Vol 117 (1) ◽  
pp. 153-160
Author(s):  
Kanghui Guo

Let S(Rn) be the space of Schwartz class functions. The dual space of S′(Rn), S(Rn), is called the temperate distributions. In this article, we call them distributions. For 1 ≤ p ≤ ∞, let FLp(Rn) = {f:∈ Lp(Rn)}, then we know that FLp(Rn) ⊂ S′(Rn), for 1 ≤ p ≤ ∞. Let U be open and bounded in Rn−1 and let M = {(x, ψ(x));x ∈ U} be a smooth hypersurface of Rn with non-zero Gaussian curvature. It is easy to see that any bounded measure σ on Rn−1 supported in U yields a distribution T in Rn, supported in M, given by the formula


Author(s):  
L. Giomi ◽  
L. Mahadevan

Multi-stable structures are objects with more than one stable conformation, exemplified by the simple switch. Continuum versions are often elastic composite plates or shells, such as the common measuring tape or the slap bracelet, both of which exhibit two stable configurations: rolled and unrolled. Here, we consider the energy landscape of a general class of multi-stable anisotropic strips with spontaneous Gaussian curvature. We show that while strips with non-zero Gaussian curvature can be bistable, and strips with positive spontaneous curvature are always bistable, independent of the elastic moduli, strips of spontaneous negative curvature are bistable only in the presence of spontaneous twist and when certain conditions on the relative stiffness of the strip in tension and shear are satisfied. Furthermore, anisotropic strips can become tristable when their bending rigidity is small. Our study complements and extends the theory of multi-stability in anisotropic shells and suggests new design criteria for these structures.


1982 ◽  
Vol 18 (2) ◽  
pp. 104-109
Author(s):  
P. I. Danchak ◽  
M. S. Mikhalishin ◽  
O. N. Shablii

Soft Matter ◽  
2014 ◽  
Vol 10 (34) ◽  
pp. 6382-6386 ◽  
Author(s):  
Nakul P. Bende ◽  
Ryan C. Hayward ◽  
Christian D. Santangelo

We demonstrate that shapes with zero Gaussian curvature, except at singularities, produced by the growth-induced buckling of a thin elastic sheet are the same as those produced by the Volterra construction of topological defects in which edges of an intrinsically flat surface are identified.


Author(s):  
Eugene Storozhuk ◽  
Volodymyr Maksimyuk ◽  
Ivan Chernyshenko ◽  
Viktoria Kornienko

The formulation of physically nonlinear problems for composite shells of zero Gaussian curvature weakened by a rectangular hole under the action of axial loading is given. The initial equations are the equations of the theory of non-sloping shells, in which the Kirchhoff–Love hypotheses take place. Geometric relationships are written in vector form, and physical relationships are based on the deformation theory of plasticity for anisotropic materials. The system of resolving equations is obtained from the Lagrange variational principle. A technique has been developed for the numerical solution of two-dimensional physically nonlinear problems for orthotropic composite shells of this type, based on the use of the method of additional stresses and the method of finite elements. A variant of the finite element method is proposed, the peculiarity of which lies in the vector approximation of the sought values and the discrete execution of the geometric part of the Kirchhoff–Love hypotheses (at the nodes of finite elements). Using the developed technique, the nonlinear elastic state of an organoplastic conical shell with a rectangular hole, which at the ends is reinforced with frames and loaded with uniformly distributed tensile forces, has been investigated.


Sign in / Sign up

Export Citation Format

Share Document