spontaneous curvature
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 51)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 22 (24) ◽  
pp. 13406
Author(s):  
Jeel Raval ◽  
Aleš Iglič ◽  
Wojciech Góźdź

The adhesion of lipid vesicles to a rigid flat surface is investigated. We examine the influence of the membrane spontaneous curvature, adhesion strength, and the reduced volume on the stability and shape transformations of adhered vesicles. The minimal strength of the adhesion necessary to stabilize the shapes of adhered vesicles belonging to different shape classes is determined. It is shown that the budding of an adhered vesicle may be induced by the change of the adhesion strength. The importance of the free vesicle shape for its susceptibility to adhesion is discussed.


2021 ◽  
Vol 33 (12) ◽  
pp. 122016
Author(s):  
J. Lyu ◽  
K. Xie ◽  
R. Chachanidze ◽  
A. Kahli ◽  
G. Boëdec ◽  
...  

2021 ◽  
Author(s):  
Daniele Agostinelli ◽  
Gwynn J Elfring ◽  
Mattia Bacca

Receptor-mediated endocytosis is the primary process for nanoparticle uptake in cells and one of the main entry mechanisms for viral infection. The cell membrane adheres to the particle (nanoparticle or virus) and then wraps it to form a vesicle delivered to the cytosol. Previous findings identified a minimum radius for a spherical particle below which endocytosis cannot occur. This is due to the insufficient driving force, from receptor-ligand affinity, to overcome the energy barrier created by membrane bending. In this paper, we extend this result to the case of clathrin-mediated endocytosis, which is the most common pathway for virus entry. Moreover, we investigate the effect of ligand inhibitors on the particle surface, motivated by viral an- tibodies, peptides or phage capsids nanoparticles. We determine the necessary conditions for endocytosis by considering the additional energy barrier due to the membrane bending to wrap such inhibiting protrusions. We find that the density and size of inhibitors determine the size range of internalized particles, and endo- cytosis is completely blocked above critical thresholds. The assembly of a clathrin coat with a spontaneous curvature increases the energy barrier and sets a maximum particle size (in agreement with experimental observations on smooth particles). Our investigation suggests that morphological considerations can inform the optimal design of neutralizing viral antibodies and new strategies for targeted nanomedicine.


2021 ◽  
Author(s):  
Arthur A. Melo ◽  
Thiemo Sprink ◽  
Jeffrey K. Noel ◽  
Elena Vázquez Sarandeses ◽  
Chris van Hoorn ◽  
...  

AbstractDynamin-related Eps15-homology domain containing proteins (EHDs) oligomerize on membrane surfaces into filaments leading to membrane remodeling. EHD crystal structures in an open and a closed conformation were previously reported, but structural information on the membrane-bound EHD oligomeric structure has remained enigmatic. Consequently, mechanistic insight into EHD-mediated membrane remodeling is lacking. Here, by using cryo-electron tomography and subtomogram averaging, we determined the structure of an EHD4 filament on a tubular membrane template at an average resolution of 7.6 Å. Assembly of EHD4 is mediated via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure resembles the closed conformation, where the tips of the helical domains protrude into the membrane. The variation in filament geometry and tube radius suggests the AMPPNP-bound filament has a spontaneous curvature of approximately 1/70 nm-1. Combining the available structural and functional data, we propose a model of EHD-mediated membrane remodeling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Steigenberger ◽  
Yentl Verleysen ◽  
Niels Geudens ◽  
José C. Martins ◽  
Heiko Heerklotz

Pseudodesmin A (PSD) is a cyclic lipodepsipeptide produced by Pseudomonas that kills certain bacteria at MIC1/2 in the single micromolar range, probably by permeabilizing their cellular membranes. Synthetic PSD variants, where the native decanoic (C10) acyl chain is varied in length from C4 to C8 and C12 to C14 carbons, were described to be not or less active against a panel of gram-positive strains, as compared to native PSD-C10. Here, we test the membrane-permeabilizing activity of PSD-C4 through PSD-C14 in terms of calcein release from liposomes, which is characterized in detail by the fluorescence-lifetime based leakage assay. Antagonistic concentrations and their chain length dependence agree well for liposome leakage and antimicrobial activity. The optimal chain length is governed by a balance between membrane partitioning (favoring longer chains) and the local perturbation or “damage” inflicted by a membrane-bound molecule (weakening for longer chains). Local perturbation, in turn, may involve at least two modes of action. Asymmetry stress between outer and inner leaflet builds up as the lipopeptides enter the outer leaflet and when it reaches a system-specific stability threshold, it causes a transient membrane failure that allows for the flip of some molecules from the outer to the inner leaflet. This cracking-in may be accompanied by transient, incomplete leakage from the aqueous cores of the liposomes observed, typically, for some seconds or less. The mismatch of the lipopeptide with the lipid leaflet geometry, expressed for example in terms of a spontaneous curvature, has two effects. First, it affects the threshold for transient leakage as described. Second, it controls the rate of equilibrium leakage proceeding as the lipopeptide has reached sufficient local concentrations in both leaflets to form quasi-toroidal defects or pores. Both modes of action, transient and equilibrium leakage, synergize for intermediate chain lengths such as the native, i.e., for PSD-C10. These mechanisms may also account for the reported chain-length dependent specificities of antibiotic action against the target bacteria.


2021 ◽  
Vol 118 (36) ◽  
pp. e2024109118
Author(s):  
Halim Kusumaatmaja ◽  
Alexander I. May ◽  
Mistianne Feeney ◽  
Joseph F. McKenna ◽  
Noboru Mizushima ◽  
...  

Seeds of dicotyledonous plants store proteins in dedicated membrane-bounded organelles called protein storage vacuoles (PSVs). Formed during seed development through morphological and functional reconfiguration of lytic vacuoles in embryos [M. Feeney et al., Plant Physiol. 177, 241–254 (2018)], PSVs undergo division during the later stages of seed maturation. Here, we study the biophysical mechanism of PSV morphogenesis in vivo, discovering that micrometer-sized liquid droplets containing storage proteins form within the vacuolar lumen through phase separation and wet the tonoplast (vacuolar membrane). We identify distinct tonoplast shapes that arise in response to membrane wetting by droplets and derive a simple theoretical model that conceptualizes these geometries. Conditions of low membrane spontaneous curvature and moderate contact angle (i.e., wettability) favor droplet-induced membrane budding, thereby likely serving to generate multiple, physically separated PSVs in seeds. In contrast, high membrane spontaneous curvature and strong wettability promote an intricate and previously unreported membrane nanotube network that forms at the droplet interface, allowing molecule exchange between droplets and the vacuolar interior. Furthermore, our model predicts that with decreasing wettability, this nanotube structure transitions to a regime with bud and nanotube coexistence, which we confirmed in vitro. As such, we identify intracellular wetting [J. Agudo-Canalejo et al., Nature 591, 142–146 (2021)] as the mechanism underlying PSV morphogenesis and provide evidence suggesting that interconvertible membrane wetting morphologies play a role in the organization of liquid phases in cells.


2021 ◽  
Author(s):  
Frank Russell Moss ◽  
James Lincoff ◽  
Maxwell Tucker ◽  
Arshad Mohammed ◽  
Michael Grabe ◽  
...  

Cells utilize molecular machines to form and remodel their membrane-defined compartments' compositions, shapes, and connections. The regulated activity of these membrane remodeling machines drives processes like vesicular traffic and organelle homeostasis. Although molecular patterning within membranes is essential to cellular life, characterizing the composition and structure of realistic biological membranes on the molecular length scale remains a challenge, particularly during membrane shape transformations. Here, we employed an ESCRT-III protein coating model system to investigate how membrane-binding proteins bind to and alter the structural patterns within lipid bilayers. We observe leaflet-level and localized lipid structures within a constricted and thinned membrane nanotube. To map the fine structure of these membranes, we compared simulated bilayer nanotubes with experimental cryo-EM reconstructions of native membranes and membranes containing halogenated lipid analogs. Halogenated lipids scatter electrons more strongly, and analysis of their surplus scattering enabled us to estimate the concentrations of lipids within each leaflet and to estimate lipid shape and sorting changes induced by high curvature and lipid-protein interactions. Specifically, we found that cholesterol enriched within the inner leaflet due to its spontaneous curvature, while acidic lipids enriched in the outer leaflet due to electrostatic interactions with the protein coat. The docosahexaenoyl (DHA) polyunsaturated chain-containing lipid SDPC enriched strongly at membrane-protein contact sites. Simulations and imaging of brominated SDPC showed how a pair of phenylalanine residues opens a hydrophobic defect in the outer leaflet and how DHA tails stabilize the defect and "snorkel" up to the membrane surface to interact with these side chains. This highly curved nanotube differs markedly from protein-free, flat bilayers in leaflet thickness, lipid diffusion, and other structural asymmetries with implications for our understanding of membrane mechanics.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5013
Author(s):  
Maozhang Tian ◽  
Xi Chen ◽  
Xinyuan Zou ◽  
Yuchen Qian ◽  
Zhang Liu ◽  
...  

Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.


2021 ◽  
Author(s):  
Ziliang Zhao ◽  
Debjit Roy ◽  
Jan Steinkuehler ◽  
Tom Robinson ◽  
Reinhard Lipowsky ◽  
...  

Molecular crowding is an inherent feature of the cell interior. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (polyethylene-glycol and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs loaded with macromolecules exhibit highly curved structures such as internal nanotubes. In addition, upon liquid-liquid phase separation as inside living cells, the membrane of GUVs encapsulating an aqueous two-phase system deforms to form apparent kinks at the contact line of the interface between the two aqueous phases. These structures, nanotubes and kinks, have dimensions below optical resolution and if resolved, can provide information about material properties such as membrane spontaneous curvature and intrinsic contact angle describing the wettability contrast of the encapsulated phases to the membrane. Previous experimental studies were based on conventional optical microscopy which cannot resolve these membrane and wetting proper-ties. Here, we studied these structures with super-resolution microscopy, namely stimulated emission depletion (STED) microscopy, together with microfluidic manipulation. We demonstrate the cylindrical nature of the nanotubes with unprecedented detail based on the superior resolution of STED and automated data analysis. The spontaneous curvature deduced from the nanotube diameters is in excellent agreement with theoretical predictions. Furthermore, we were able to resolve the membrane 'kink' structure as a smoothly curved membrane demonstrating the existence of the intrinsic contact angle. We find very good agreement between the directly measured values and the theoretically predicted ones based on the apparent contact angles on the micrometer scale. During different stages of cellular events, biomembranes undergo a variety of shape transformations such as the formation of buds and nanotubes regulated by membrane necks. We demonstrate that these highly curved membrane structures are amenable to STED imaging and show that such studies provide important insights in the membrane properties and interactions underlying cellular activities.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 516
Author(s):  
James M. Mangum ◽  
Ferdinand Harerimana ◽  
Millicent N. Gikunda ◽  
Paul M. Thibado

Electrically conductive, highly flexible graphene membranes hold great promise for harvesting energy from ambient vibrations. For this study, we built numerous three-dimensional graphene ripples, with each featuring a different amount of compression, and performed molecular dynamics simulations at elevated temperatures. These ripples have a convex cosine shape, then spontaneously invert their curvature to concave. The average time between inversion events increases with compression. We use this to determine how the energy barrier height depends on strain. A typical convex-to-concave curvature inversion process begins when the ripple’s maximum shifts sideways from the normal central position toward the fixed outer edge. The ripple’s maximum does not simply move downward toward its concave position. When the ripple’s maximum moves toward the outer edge, the opposite side of the ripple is pulled inward and downward, and it passes through the fixed outer edge first. The ripple’s maximum then quickly flips to the opposite side via snap-through buckling. This trajectory, along with local bond flexing, significantly lowers the energy barrier for inversion. The large-scale coherent movement of ripple atoms during curvature inversion is unique to two-dimensional materials. We demonstrate how this motion can induce an electrical current in a nearby circuit.


Sign in / Sign up

Export Citation Format

Share Document