Metabolic activation of mutagens in mammals host-mediated assay utilizing the induction of mitotic gene conversion in saccharomyces cerevisiae

1973 ◽  
Vol 3 (2) ◽  
pp. 99-110 ◽  
Author(s):  
R. Fahrig
1994 ◽  
Vol 25 (5) ◽  
pp. 472-474 ◽  
Author(s):  
Viera Vlčková ◽  
Luba Černáková ◽  
Eva Farkašová ◽  
Jela Brozmanová

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 59-70
Author(s):  
Yi-shin Weng ◽  
Jac A Nickoloff

Abstract Double-strand break (DSB) induced gene conversion in Saccharomyces cerevisiae during meiosis and MAT switching is mediated primarily by mismatch repair of heteroduplex DNA (hDNA). We used nontandem ura3 duplications containing palindromic frameshift insertion mutations near an HO nuclease recognition site to test whether mismatch repair also mediates DSB-induced mitotic gene conversion at a non-MAT locus. Palindromic insertions included in hDNA are expected to produce a stem-loop mismatch, escape repair, and segregate to produce a sectored (Ura+/−) colony. If conversion occurs by gap repair, the insertion should be removed on both strands, and converted colonies will not be sectored. For both a 14-bp palindrome, and a 37-bp near-palindrome, ~75% of recombinant colonies were sectored, indicating that most DSB-induced mitotic gene conversion involves mismatch repair of hDNA. We also investigated mismatch repair of well-repaired markers flanking an unrepaired palindrome. As seen in previous studies, these additional markers increased loop repair (likely reflecting corepair). Among sectored products, few had additional segregating markers, indicating that the lack of repair at one marker is not associated with inefficient repair at nearby markers. Clear evidence was obtained for low levels of short tract mismatch repair. As seen with full gene conversions, donor alleles in sectored products were not altered. Markers on the same side of the DSB as the palindrome were involved in hDNA less often among sectored products than nonsectored products, but markers on the opposite side of the DSB showed similar hDNA involvement among both product classes. These results can be explained in terms of corepair, and they suggest that mismatch repair on opposite sides of a DSB involves distinct repair tracts.


Mutagenesis ◽  
1994 ◽  
Vol 9 (4) ◽  
pp. 377-381
Author(s):  
Ann E. Ehrenhofer-Murray ◽  
Friedrich E. Würgler ◽  
Christian Sengstag

Genetics ◽  
1985 ◽  
Vol 111 (1) ◽  
pp. 7-22
Author(s):  
James E Haber ◽  
Mark Hearn

ABSTRACT We have examined spontaneous, interchromosomal mitotic recombination events between his4 alleles in both Rad+ and rad52 strains of Saccharomyces cerevisiae. In Rad+ strains, 74% of the His+ prototrophs resulted from gene conversion events without exchange of flanking markers. In diploids homozygous for the rad52-1 mutation, the frequency of His+ prototroph formation was less than 5% of the wild-type value, and more than 80% of the gene conversion events were accompanied by an exchange of flanking markers. Most of the rad52 intragenic recombination events arose by gene conversion accompanied by an exchange of flanking markers and not by a simple reciprocal exchange between the his4A and his4C alleles. There were also profound effects on the kinds of recombinant products that were recovered. The most striking effect was that RAD52-independent mitotic recombination frequently results in the loss of one of the two chromosomes participating in the gene conversion event.


1986 ◽  
Vol 6 (11) ◽  
pp. 3685-3693 ◽  
Author(s):  
B Y Ahn ◽  
D M Livingston

Plasmids capable of undergoing genetic exchange in mitotically dividing Saccharomyces cerevisiae cells were used to measure the length of gene conversion events, to determine patterns of coconversion when multiple markers were present, and to correlate the incidence of reciprocal recombination with the length of conversion tracts. To construct such plasmids, restriction site linkers were inserted both within the HIS3 gene and in the flanking sequences, and two different his3- alleles were placed in a vector. Characterization of the genetic exchanges in these plasmids showed that most occur with the conversion of one his3- allele. Many of these events included coconversions in which more than one marker along the allelic sequence was replaced. The frequency of coconversion decreased with the distance between two markers such that markers further than 1 kilobase apart were infrequently coconverted. From these results the average length of conversion was determined to be approximately 0.5 kilobase. Examination of coconversions involving three or more markers revealed an almost obligatory, simultaneous coconversion pattern of all markers. Thus, when two markers which flank an intervening marker are converted, the intervening marker is 20 times more likely to be converted than to remain unchanged. The results of these studies also showed that the incidence of reciprocal recombination, which accompanies more than 20% of the conversion events, is more frequent when the conversion tract is longer than average.


Sign in / Sign up

Export Citation Format

Share Document