reca gene
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 23)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Vol 9 (11) ◽  
pp. 2343
Author(s):  
Itaru Dekio ◽  
Ken-ichi Okuda ◽  
Masako Nishida ◽  
Susumu Hamada-Tsutsumi ◽  
Tomo Suzuki ◽  
...  

Cutibacterium modestum is a new species coined in 2020 as the fifth species of genus Cutibacterium, which includes Cutibacterium acnes. The species is predicted as a minor but common member of skin microbiome and includes a group tentatively named as “Propionibacterium humerusii”. The description of the species has been provided only with a single strain. To establish the characteristics of C. modestum and search for possible disease-related subtypes, we investigated the biochemical characteristics of eight live strains and performed in silico comparison of nine genomes. The common features, which included the morphology of Gram-stain positive short rods, the negativity of phenylalanine arylamidase, and several unique MALDI-TOF MS spectral peaks, were considered useful in laboratory identification. Pairwise comparisons of the genomes by in silico DNA–DNA hybridization showed similarity values of 98.1% or larger, which were far higher than the subspecies cutoff of 79–80%. The 16S rRNA gene sequences of thirteen isolates and genomes were identical. Their recA gene sequences were identical except for two strains, HM-510 (HL037PA2) and Marseille-P5998, which showed unique one-nucleotide polymorphisms. The biochemical features using API kits were slightly different among the isolates but far closer than those of the nearest other species, C. acnes and Cutibacterium namnetense. Spectra of MALDI-TOF mass spectrometry showed slight differences in the presence of m/z 10,512 (10 kD chaperonin GroS) and three other peaks, further clustering the eight isolates into three subtypes. These results indicated that these isolates did not separate to form subspecies-level clusters, but subtyping is possible by using recA gene sequences or MALDI-TOF mass spectrometry spectra. Moreover, this work has confirmed that a group “P. humerusii” is included in C. modestum.


2021 ◽  
Vol 60 (2) ◽  
pp. 253-257
Author(s):  
Duccio MIGLIORINI ◽  
Francesco PECORI ◽  
Aida RAIO ◽  
Nicola LUCHI ◽  
Domenico RIZZO ◽  
...  

2-years-old plants of Pyrus communis showing symptoms of fire blight disease were sampled in an orchard in Tuscany (Italy) during Autumn 2020. Plants were obtained the previous spring from a commercial nursery located in a region where the disease is present since 1994. The collected material was processed in the lab in order to verify the presence of the bacterium Erwinia amylovora, the causal agent of fire blight. Pure isolates showing white mucoid colonies and levan producers on Levan medium were putatively assimilated to E. amylovora. DNA was extracted from the cultures and analysed with three molecular assays, including duplex PCR of the 29-Kb plasmid pEA29 and the ams chromosomal region, sequencing of the 16S rDNA and recA gene regions, two real-time PCR assays on symptomatic plant tissues. All tests confirmed the presence of E. amylovora. Symptomatic and surrounding plants were removed and immediately destroyed according to the regional phytosanitary protocol. This outcome poses a serious threat for fruit orchards in the area.


2021 ◽  
Vol 14 (1) ◽  
pp. 85-98
Author(s):  
Marina Zekic Stosic ◽  
Snežana Tomanović ◽  
Ratko Sukara ◽  
Smiljana Milošević ◽  
Sara Savic

Lyme disease is a tick-borne disease caused by Borrelia burgdorferi s.l. spirochaetes. It is transmitted by several hard ticks of the genus Ixodes, mainly Ixodes ricinus in Europe. Higher environment temperature caused by climate changes is linked to a higher activity of ticks during most of the year, thus the importance of tick-borne diseases is increasing in the region. A total of 90 ticks were collected by removing from humans. Every tick collected was identified regarding the species. Total of 79 ticks belonging to the genus Ixodes were tested for the presence of the pathogen strains of Borrelia burgdorferi s.l, Borrelia afzelii, Borrelia garinii and Borrelia burgdoreri sensu stricto by a real-time PCR assay targeting the recA gene.  In total, 8 of them tested positive. Representative samples were tested with conventional PCR and results were in accordance. This study showed that the Genesig q16 Real-Time PCR is an easy diagnostic test for fast detection of Borrelia spirochetes in ticks. Key words: Lyme disease, tick-borne disease, real-time PCR, Borrelia


Plant Disease ◽  
2021 ◽  
Author(s):  
Huan-Yu Chen ◽  
Chun-Chi Lin ◽  
Chih-Wei Wang ◽  
NAI-CHUN LIN

Roselle (Hibiscus sabdariffa L.) plants, whose calyces are used for production of beverages or jams, are mainly cultivated in Taitung County of eastern Taiwan. Since 2016, large crown galls were observed on the roselle plants in the commercial plantations at Taimali and Jinfong Townships of Taitung County. A follow-up survey in July and August of 2017 revealed spreading of this disease to the neighboring areas including Beinan and Dawu Townships. Disease incidence was estimated to be 0.6-10%. Galls of varying sizes (2-15 cm in diameter) were usually found on the roots and crowns of the roselle plants, starting with small swellings at the infection sites. Galls were light-colored, and smooth and tender in texture at the early stage, but later turned dark-colored, and appeared rough and woody. In some cases, adventitious roots extruding from the larger crown galls could be seen. Isolation of the causal agent was performed by quadrantally streaking bacterial suspension made from surface-sterilized, macerated galls on trypticase soy agar (TSA). After incubating at 28°C for 5 days, single colonies were transferred onto new TSA plates for further cultivation at 28°C. Finally, circular, convex, viscous and milky white colonies with smooth surface similar to colony morphology of Agrobacterium tumefaciens C58 were obtained for further identification. First, all six candidate isolates (TZ-1, TL1-2, TL2-1, TD1-1, TD1-24 and TD2-1) were identified as Agrobacterium spp. using the partial sequences of the 16S rRNA gene (accession numbers MW205820 to MW205825 in the GenBank database). The selected isolates also showed some biochemical and physiological characteristics similar to A. tumefaciens, including oxidase positive, growth at 35°C and in 2% NaCl, and alkalinity from litmus milk. Moreover, they were tested negative for utilization of citrate and acid production on potato dextrose agar (PDA) supplemented with calcium carbonate. Under a transmission electron microscope, the bacterium was rod-shaped and possessed peritrichous flagella. By means of multiplex PCR using primers designed for differentiation of Agrobacterium rubi, Agrobacterium vitis and Agrobacterium biovars 1 and 2, a 184 bp product was detected in all six isolates, indicating that they all belong to Agrobacterium biovar 1. Furthermore, the recA allele of each isolate was PCR amplified using primers F2898/F2899, and recA sequence analysis assigned all six isolates to A. tumefaciens genomospecies G7 (GenBank accession numbers MZ570905-MZ570910). Pathogenicity assay was carried out by inoculating the stems of 2-week-old roselle seedlings through wounds made with a sterile needle with bacteria on it. The inoculated seedlings were kept in plastic bags to maintain high humidity. Symptoms similar to those observed in the field developed at the inoculation sites after 7 days, and Koch’s postulates were fulfilled when the bacteria re-isolated from the galls were also identified as A. tumefaciens genomospecies G7 using recA gene sequence analysis. To our knowledge, this is the first report of crown gall disease caused by A. tumefaciens on Hibiscus sabdariffa in Taiwan. This disease may potentially damage the roselle industry if no action is taken to stop its spreading. Identification of the causal agent of roselle crown gall disease could help us further investigate its ecology and develop integrated pest management strategies for prevention of this disease in the future.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hamzeh Mafakheri ◽  
Seied Mohsen Taghavi ◽  
Sadegh Zarei ◽  
Nemanja Kuzmanovic ◽  
Ebrahim Osdaghi

Crown gall disease caused by diverse Agrobacterium species is one of the main biotic constraints in the ornamental plants industry in Iran (Mafakheri et al. 2017). In August 2019, Japanese spindle (Euonymus japonicus var. Green Rocket) plants showing crown gall symptoms were observed in a commercial greenhouse in Tehran, Iran. Infected plants were characterized by a visible overgrowth on their stems and crown. Bacterial isolation from the gall tissues was performed on nutrient agar (NA) and 1A media as described by Moore et al. (2001). The six resulted bacterial strains (A.E1 to A.E6) were evaluated using PCR primer pair F8360/F8361 amplifying a 453 bp DNA fragment in recA gene and confirmed as Agrobacterium sp. (Shams et al. 2013). Pathogenicity of the strains was evaluated in two independent assays on Japanese spindle plantlets as well as 10-15 day old tomato (Solanum lycopersicum cv. Sunseed 6189) and sunflower (Helianthus annuus cv. Armavirski) plants in greenhouse conditions using the needle prick method as described previously (Mafakheri et al. 2019). The reference strain A. radiobacter ICMP 5856 and sterile distilled water were used as positive and negative controls, respectively. Crown gall symptoms appeared 20-25 days post inoculation on the Japanese spindle plantlets as well as tomato and sunflower plants inoculated with the strains isolated in this study, while the negative control plants remained asymptomatic. Koch’s postulates were accomplished by re-isolating on NA medium and PCR-based identification of the inoculated strains from the symptomatic plants. The representative strain A.E1 was subjected to multilocus sequence analysis (MLSA) using the sequences of four housekeeping genes (i.e. atpD, gyrB, recA, and rpoB) as described previously (Mafakheri et al. 2019). MLSA results revealed that the strain A.E1 is phylogenetically closely related to A. rosae. The sequences were deposited into GenBank under the accession numbers MT007962 to MT007965 for atpD, gyrB, recA, and rpoB, respectively. Further, the strain A.E1 was subjected to whole genome sequencing using Illumina HiSeq X platform. DNA extraction was performed using NucleoSpin Microbial DNA kit (Macherey-Nagel, Germany), DNA libraries were obtained with Nextera XT DNA Library Prep Kit (Illumina, USA), and de novo sequence assembly was performed using SPAdes genome assembler. The resulting whole genome sequence was deposited into the GenBank database under the accession number JAFJZW000000000. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were calculated among all the type strains of Agrobacterium species/genomospecies using standard criteria as detailed previously (Osdaghi et al. 2020; Chen et al. 2021). The strain A.E1 had 97% ANI and 72% dDDH values with A. rosae strain NCPPB 1650, suggesting that the bacterial strains isolated from Japanese spindle in Iran belong to A. rosae. This is the first report of A. rosae causing crown gall disease on Japanese spindle in Iran. The new crown gall disease could negatively affect the ornamental shrub production industry in central Iran unless strict sanitary measures are taken into the account in the nurseries in these areas. Further nationwide surveys and samplings are warranted to elucidate the economic impact of the pathogen on ornamental plant industry in the country.


2021 ◽  
Vol 22 (13) ◽  
pp. 7003
Author(s):  
Sarah Vanwijnsberghe ◽  
Charlotte Peeters ◽  
Emmelie De Ridder ◽  
Charles Dumolin ◽  
Anneleen D. Wieme ◽  
...  

We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA–DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1168
Author(s):  
Anna Brzostek ◽  
Przemysław Płociński ◽  
Alina Minias ◽  
Aneta Ciszewska ◽  
Filip Gąsior ◽  
...  

Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of Mycobacterium smegmatis, a free-living and nonpathogenic mycobacterium. The aim of the present study was to identify elements of RecA-independent responses to DNA damage in pathogenic intracellular mycobacteria. With the help of global transcriptional profiling, we were able to dissect RecA-dependent and RecA-independent pathways. We profiled the DNA damage responses of an M. tuberculosis strain lacking the recA gene, a strain with an undetectable level of the PafBC regulatory system, and a strain with both systems tuned down simultaneously. RNA-Seq profiling was correlated with the evaluation of cell survival in response to DNA damage to estimate the relevance of each system to the overall sensitivity to genotoxic agents. We also carried out whole-cell proteomics analysis of the M. tuberculosis strains in response to mitomycin C. This approach highlighted that LexA, a well-defined key element of the SOS system, is proteolytically inactivated during RecA-dependent DNA repair, which we found to be transcriptionally repressed in response to DNA-damaging agents in the absence of RecA. Proteomics profiling revealed that AlkB was significantly overproduced in the ΔrecA pafBCCRISPRi/dCas9 strain and that Holliday junction resolvase RuvX was a DNA damage response factor that was significantly upregulated regardless of the presence of functional RecA and PafBC systems, thus falling into a third category of DNA damage factors: RecA- and PafBC-independent. While invisible to the mass spectrometer, the genes encoding alkA, dnaB, and dnaE2 were significantly overexpressed in the ΔrecA pafBCCRISPRi/dCas9 strain at the transcript level.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fanfan Wang ◽  
Tao Tang ◽  
ting Mao ◽  
Jie Guo ◽  
XiaoLiang Guo ◽  
...  

Banxia [Pinellia ternata (Thunb.) Breit., Araceae] is a perennial herbaceous plant, where the tuber is commonly used in traditional Chinese herbal medicine. In the summer of 2020, an outbreak of soft rot of Banxia was observed in Zhugentan Town (30°50′N, 112°91′E), Qianjiang City, Hubei Province, with about 56% percentage of infected plants. Symptomatic plants initially appeared with small water-soaked spots on leaves that progressed into extensive translucent spots when facing a light source. The bacteria further spread to the stems and tubers. Infected tubers appeared normal, but inner macerated inclusions exuded when touched. The whole plant was macerated and collapsed within a few days. Ten leaves with typical symptoms were obtained from a diseased field, by surface sterilizing in 75% ethanol for 30 s and 0.3% NaClO for 5 min, washing the tissue sections three times in sterile water. Small pieces of tissue (5 × 5 mm) were removed from lesion borders, plated on nutrient ager medium, and cultivated at 37 ℃ for 48 h. Five representative isolates were selected for further identification. Colonies were all smooth and transparent. In addition, these strains were Gram-negative, and had the ability to reduce D-arabinose, melibiose, galactose, raffinose, rhamnose, inositol, and mannitol, but not reduce 5-keto-D-gluconate, L-xylose, amygdalin, and sorbitol. Genomic DNA was extracted from isolate stain ZG5. The 16S rDNA gene, recombinase A (recA) gene, and DNA polymerase III subunits gamma and tau (dnaX) were amplified by PCR with the primers 27f/1492r (Weisburg et al. 1991), recF/recR (Waleron et al. 2002), and dnaXf/dnaXr (Sławiak et al. 2009), respectively. The PCR products were sequenced, then submitted to GenBank (GenBank MW332472, MW349833, MW349834, respectively). BLAST search showed that the sequences of 16S rDNA, recA, and dnaX respectively matched ≥99% with D. fangzhongdai strains DSM 101947 (CP025003), QZH3 (CP031507), and PA1 (CP020872). Pathogenicity tests were performed on 10 healthy, 3-month-old P. ternate plants. Five plants were injected with 20 μl of bacterial suspension (108 CFU/ml) of isolate ZG5, and other plants were injected with sterile water as a negative control. All tested plants were incubated at 28 ℃ and individually covered with a plastic bag. After 24 h, soft rot symptoms all appeared on the pathogen-inoculated leaves, whereas no symptoms on the control leaves. The pathogenicity test was repeated three times and obtained same results. Koch’s postulates were fulfilled by reisolating D. fangzhongdai from inoculated plants. Meanwhile, PCR were performed on the reisolated bacteria as above described, and the pathogen was identified and confirmed as D. fangzhongdai. Here we report that D. fangzhongdai causes soft rot of P. ternata in China. The disease progressed very rapidly, and reduced the yield and quality of tubers. Thus, more research is needed to implement effective strategies to manage this disease.


Author(s):  
Jack X. Chen ◽  
Boon Lim ◽  
Harrison Steel ◽  
Yizhi Song ◽  
Mengmeng Ji ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document