Magnetic fields and radio jets in giant radio galaxies

Astrophysics ◽  
1995 ◽  
Vol 38 (4) ◽  
pp. 389-389
Author(s):  
M. A. Hovhannissian
Author(s):  
Nectaria A. B. Gizani

AbstractUsing radio and X-ray data of two powerful radio galaxies, we attempt to find out the role that radio jets (in terms of composition and power), as well as intracluster magnetic fields, play in the formation, propagation, and acceleration of cosmic rays. For this study we have selected the powerful radio galaxies Hercules A and 3C 310 because of the presence of ring-like features in their kpc-scale radio emission instead of the usual hotspots. These two FR1.5 lie at the center of galaxy cooling flow clusters in a dense environment. We observed the unique jets of Hercules both in kpc-scales (multifrequency VLA data) and pc-scales (EVN observations at 18 cm). We have also observed the core and inner jets of 3C310 at 18 cm using global VLBI. We report on the work in progress.


2019 ◽  
Vol 490 (1) ◽  
pp. 1363-1382 ◽  
Author(s):  
Michael D Smith ◽  
Justin Donohoe

ABSTRACT We explore the observational implications of a large systematic study of high-resolution three-dimensional simulations of radio galaxies driven by supersonic jets. For this fiducial study, we employ non-relativistic hydrodynamic adiabatic flows from nozzles into a constant pressure-matched environment. Synchrotron emissivity is approximated via the thermal pressure of injected material. We find that the morphological classification of a simulated radio galaxy depends significantly on several factors with increasing distance (i.e. decreasing observed resolution) and decreasing orientation often causing reclassification from FR II (limb-brightened) to FR I (limb-darkened) type. We introduce the Lobe or Limb Brightening Index (LBI) to measure the radio lobe type more precisely. The jet density also has an influence as expected with lower density leading to broader and bridged lobe morphologies as well as brighter radio jets. Hence, relating observed source type to the intrinsic jet dynamics is not straightforward. Precession of the jet direction may also be responsible for wide relaxed sources with lower LBI and FR class as well as for X-shaped and double–double structures. Helical structures are not generated because the precession is usually too slow. We conclude that distant radio galaxies could appear systematically more limb darkened due to merger-related redirection and precession as well as due to the resolution limitation.


2009 ◽  
Vol 5 (H15) ◽  
pp. 251-253
Author(s):  
Vitor de Souza ◽  
Peter L. s Biermman

AbstractIn this paper we briefly discuss the present status of the cosmic ray astrophysics under the light of the new data from the Pierre Auger Observatory. The measured energy spectrum is used to test the scenario of production in nearby radio galaxies. Within this framework the AGN correlation would require that most of the cosmic rays are heavy nuclei and are widely scattered by intergalactic magnetic fields.


1993 ◽  
Vol 105 ◽  
pp. 1710 ◽  
Author(s):  
J. I. Gonzalez-Serrano ◽  
R. Carballo ◽  
I. Perez-Fournon

1979 ◽  
Vol 91 ◽  
pp. 257 ◽  
Author(s):  
G. K. Miley ◽  
D. E. Osterbrock

1990 ◽  
Vol 140 ◽  
pp. 447-448
Author(s):  
P. Pismis ◽  
E. Moreno ◽  
A. Garcia-Barreto

The existence of non–steady phenomena, namely activity in the form of radial motions (outflow) of matter from the nuclei of galaxies is well established at present. Active Galactic Nuclei (AGN) constitute a topic of great interest and are intensively studied by all existing observational techniques. Conventionally objects classified as AGN span a range from quasars, radio galaxies to Seyferts 1 and 2. It appears, however, that there exist galaxies which exhibit somewhat milder activity which does not qualify their inclusion in the AGN group. The designation of MAGN (M for mildly) was suggested in the past (Pismis, 1986) to cover the less energetic nuclei. It may be reasonable to consider that active nuclei form a sequence, the difference along it being due to the energetics of the nuclei, from the most active quasars and radio galaxies down to the mildest ones like M31 or our Galaxy. The phenomenon underlying the activity may thus be universal, subject to the intrinsic energetics of the nuclei (Pismis, 1987).


Author(s):  
R. R. Andreasyan

We bring results of some our investigations of magnetic field of our Galaxy and extragalactic radio sources. For the study were used data of Faraday rotation of pulsars and extragalactic radio sources as well as data of physical and morphological properties of more than 500 radio galaxies of different morphological classes.


Sign in / Sign up

Export Citation Format

Share Document