Reflection and transmission coefficients of electromagnetic waves with different polarizations on a one-dimensional layer of an inhomogeneity of the medium

1996 ◽  
Vol 39 (9) ◽  
pp. 717-724
Author(s):  
V. I. Pogorelov
10.14311/1803 ◽  
2013 ◽  
Vol 53 (3) ◽  
Author(s):  
Amine B. Hammou

The continuity relation is generalized to quasi-Hermitian one-dimensional Hamiltonians. As an application we show that the reflection and transmission coefficients computed with the generalized current obey the conventional unitarity relation for the continuous double delta function potential.


2010 ◽  
Vol 24 (18) ◽  
pp. 1951-1961 ◽  
Author(s):  
A. R. MKRTCHYAN ◽  
A. G. HAYRAPETYAN ◽  
B. V. KHACHATRYAN ◽  
R. G. PETROSYAN

Transformation (reflection and transmission) of sound and electromagnetic waves are considered in non-stationary media, properties of which abruptly change in time. Reflection and transmission coefficients for both amplitudes and intensities of sound and electromagnetic waves are obtained. Quantitative relations between the reflection and transmission coefficients for both sound and electromagnetic waves are given. The sum of the energy flux reflection and transmission coefficients for both types of waves is not equal to one (for sound waves it is greater than one). The energy of both waves is not conserved, that is, exchange of the energy occurs between the corresponding waves and medium. As a result, the sound wave obtains a notable property: the transmitting wave carries energy equal to the sum of the energies of the incident and reflected waves. A possibility of the amplification of sound waves and transformation of their frequencies is illustrated.


1994 ◽  
Vol 52 (3) ◽  
pp. 443-456 ◽  
Author(s):  
E. Busatti ◽  
A. Ciucci ◽  
M. De Rosa ◽  
V. Palleschi ◽  
S. Rastelli ◽  
...  

The reflection and transmission coefficients for an electromagnetic beam propagating in an inhomogeneous plasma are calculated analytically using the Magnus approximation in different physical configurations. The theoretical predictions for such coefficients are expressed in simple analytical form, and are compared with the exact results obtained by numerical solution of the wave propagation equations, using the Berreman 4 × 4 matrix method. It is shown that the theoretical approach is able to reproduce the correct results for reflection and transmission coefficients over a wide range of physical parameters. The accuracy of the theoretical analysis, at different orders of approximation, is also discussed.


In this paper, we illustrate an application of the Laplace transformation for finding the quantum mechanical Reflection and Transmission coefficients for a particle through a one-dimensional vertical step potential. Quantum mechanics is one of the branches of physics in which the physical problems are solved by algebraic and analytic methods. By applying the Laplace transformation, we can find the quantum mechanical Reflection and Transmission coefficients for a particle through a one-dimensional vertical step potential. Generally, the Laplace transformation has been applied in different areas of science and engineering and makes it easier to solve the problems inengineering applications. It is a mathematical tool which has been put to use for solving the differential equations without finding their general solutions. It has applications in nearly all science and engineering disciplines like analysis of electrical circuits, heat and mass transfer, fluid dynamics, nuclear physics, process controls, quantum mechanical problems,etc.


2006 ◽  
Vol 312 ◽  
pp. 311-318 ◽  
Author(s):  
Xiao Ming Wang ◽  
Yinghao Teo ◽  
Wing K. Chiu ◽  
Greg Foliente

Generally, any chemical or physical change in a material may cause variation in its permittivity and permeability. The propagation of microwave through the material can be affected by these variation in properties. The analysis of microwave propagation through materials may therefore provide a means for condition monitoring. This paper utilizes a one-dimensional scenario, demonstrating the feasibility to link measurable reflection and transmission coefficients of microwave to concrete permittivity and permeability, which are essentially associated with water content in concrete. As a result, water content can then be monitored through the measurement of these coefficients. The study also demonstrates the feasibility of using the same technique to estimate the thickness of the concrete that microwave propagates through.


Sign in / Sign up

Export Citation Format

Share Document