Reduction of two-point boundary value problems in a vector space to initial value problems by projection

1966 ◽  
Vol 8 (3) ◽  
pp. 270-289 ◽  
Author(s):  
Karl G. Guderley ◽  
Paul J. Nikolai
Author(s):  
John V. Baxley ◽  
Sarah E. Brown

SynopsisBoundary value problems associated with y″ = f(x, y, y′) for 0 ≦ x ≦ 1 are considered. Using techniques based on the shooting method, conditions are given on f(x, y,y′) which guarantee the existence on [0, 1] of solutions of some initial value problems. Working within the class of such solutions, conditions are then given on nonlinear boundary conditions of the form g(y(0), y′(0)) = 0, h(y(0), y′(0), y(1), y′(1)) = 0 which guarantee the existence of a unique solution of the resulting boundary value problem.


Author(s):  
Changpin Li ◽  
Fanhai Zeng ◽  
Fawang Liu

AbstractIn this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.


Sign in / Sign up

Export Citation Format

Share Document