On the representation theory of wreath products of finite groups and symmetric groups

1999 ◽  
Vol 96 (5) ◽  
pp. 3590-3599 ◽  
Author(s):  
I. A. Pushkarev
2009 ◽  
Author(s):  
Tullio Ceccherini-Silberstein ◽  
Fabio Scarabotti ◽  
Filippo Tolli

2001 ◽  
Vol 71 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Karin Erdmann

AbstractLet K be a field of characteristic p. The permutation modules associated to partitions of n, usually denoted as Mλ, play a central role not only for symmetric groups but also for general linear groups, via Schur algebras. The indecomposable direct summands of these Mλ were parametrized by James; they are now known as Young modules; and Klyachko and Grabmeier developed a ‘Green correspondence’ for Young modules. The original parametrization used Schur algebras; and James remarked that he did not know a proof using only the representation theory of symmetric groups. We will give such proof, and we will at the same time also prove the correspondence result, by using only the Brauer construction, which is valid for arbitrary finite groups.


2008 ◽  
Vol 156 (1) ◽  
pp. 44-55 ◽  
Author(s):  
T. Ceccherini-Silberstein ◽  
F. Scarabotti ◽  
F. Tolli

2005 ◽  
Vol 2005 (9) ◽  
pp. 1365-1379 ◽  
Author(s):  
Robert Boyer

The representation theory of infinite wreath product groups is developed by means of the relationship between their group algebras and conjugacy classes with those of the infinite symmetric group. Further, since these groups are inductive limits of finite groups, their finite characters can be classified as limits of normalized irreducible characters of prelimit finite groups. This identification is called the “asymptotic character formula.” TheK0-invariant of the groupC∗-algebra is also determined.


2008 ◽  
Vol 51 (2) ◽  
pp. 273-284 ◽  
Author(s):  
David J. Benson

AbstractLet $K$ be a field of characteristic $p$ and let $G$ be a finite group of order divisible by $p$. The regularity conjecture states that the Castelnuovo–Mumford regularity of the cohomology ring $H^*(G,K)$ is always equal to 0. We prove that if the regularity conjecture holds for a finite group $H$, then it holds for the wreath product $H\wr\mathbb{Z}/p$. As a corollary, we prove the regularity conjecture for the symmetric groups $\varSigma_n$. The significance of this is that it is the first set of examples for which the regularity conjecture has been checked, where the difference between the Krull dimension and the depth of the cohomology ring is large. If this difference is at most 2, the regularity conjecture is already known to hold by previous work.For more general wreath products, we have not managed to prove the regularity conjecture. Instead we prove a weaker statement: namely, that the dimensions of the cohomology groups are polynomial on residue classes (PORC) in the sense of Higman.


10.37236/7790 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Christian Gaetz

An $r$-dual tower of groups is a nested sequence of finite groups, like the symmetric groups, whose Bratteli diagram forms an $r$-dual graded graph.  Miller and Reiner introduced a special case of these towers in order to study the Smith forms of the up and down maps in a differential poset.  Agarwal and the author have also used these towers to compute critical groups of representations of groups appearing in the tower.  In this paper I prove that when $r=1$ or $r$ is prime, wreath products of a fixed group with the symmetric groups are the only $r$-dual tower of groups, and conjecture that this is the case for general values of $r$.  This implies that these wreath products are the only groups for which one can define an analog of the Robinson-Schensted bijection in terms of a growth rule in a dual graded graph.


Sign in / Sign up

Export Citation Format

Share Document