scholarly journals ON THE REGULARITY CONJECTURE FOR THE COHOMOLOGY OF FINITE GROUPS

2008 ◽  
Vol 51 (2) ◽  
pp. 273-284 ◽  
Author(s):  
David J. Benson

AbstractLet $K$ be a field of characteristic $p$ and let $G$ be a finite group of order divisible by $p$. The regularity conjecture states that the Castelnuovo–Mumford regularity of the cohomology ring $H^*(G,K)$ is always equal to 0. We prove that if the regularity conjecture holds for a finite group $H$, then it holds for the wreath product $H\wr\mathbb{Z}/p$. As a corollary, we prove the regularity conjecture for the symmetric groups $\varSigma_n$. The significance of this is that it is the first set of examples for which the regularity conjecture has been checked, where the difference between the Krull dimension and the depth of the cohomology ring is large. If this difference is at most 2, the regularity conjecture is already known to hold by previous work.For more general wreath products, we have not managed to prove the regularity conjecture. Instead we prove a weaker statement: namely, that the dimensions of the cohomology groups are polynomial on residue classes (PORC) in the sense of Higman.

2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


1980 ◽  
Vol 32 (3) ◽  
pp. 714-733 ◽  
Author(s):  
N. B. Tinberg

1. Introduction.Let p be a prime number. A finite group G = (G, B, N, R, U) is called a split(B, N)-pair of characteristic p and rank n if(i) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where H= B ⋂ N and the Weyl group W= N/H is generated by the set R= ﹛ω 1,… , ω n) of “special generators.”(ii) H= ⋂n∈N n-1Bn(iii) There exists a p-subgroup U of G such that B = UH is a semidirect product, and H is abelian with order prime to p.A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)- pair. (Unsaturated means “not necessarily saturated”.)


1989 ◽  
Vol 39 (2) ◽  
pp. 249-254 ◽  
Author(s):  
R. Brandl ◽  
P.A. Linnell

Let G be a finite group and let k be a field. We determine the smallest possible rank of a free kG-module that contains submodules of every possible dimension. As an application, we obtain various criteria for the wreath product of two finite groups to be a CLT-group.


1999 ◽  
Vol 60 (2) ◽  
pp. 177-189 ◽  
Author(s):  
K.W. Gruenberg ◽  
L.G. Kovács

Let G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R] let dg(R/[R, R]) be the number of elements required to generate this module. Define d(R/[R, F]) similarly. By an earlier result of the first author, for a fixed G, the difference dG(R/[R, R]) − d(R/[R, F]) is independent of the choice of F and φ; here it is called the proficiency gap of G. If this gap is 0, then G is said to be proficient. It has been more usual to consider dF(R), the number of elements required to generate R as normal subgroup of F: the group G has been called efficient if F and φ can be chosen so that dF(R) = dG(R/[R, F]). An efficient group is necessarily proficient; but (though usually expressed in different terms) the converse has been an open question for some time.


2020 ◽  
pp. 1-7
Author(s):  
Omar Tout

Abstract It is well known that the pair $(\mathcal {S}_n,\mathcal {S}_{n-1})$ is a Gelfand pair where $\mathcal {S}_n$ is the symmetric group on n elements. In this paper, we prove that if G is a finite group then $(G\wr \mathcal {S}_n, G\wr \mathcal {S}_{n-1}),$ where $G\wr \mathcal {S}_n$ is the wreath product of G by $\mathcal {S}_n,$ is a Gelfand pair if and only if G is abelian.


2011 ◽  
Vol 18 (04) ◽  
pp. 663-674 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
S. Rahbariyan

The degree pattern of a finite group G was introduced in [10]. We say that G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and same degree pattern as G. When a group G is 1-fold OD-characterizable, we simply call it OD-characterizable. In recent years, a number of authors attempt to characterize finite groups by their order and degree pattern. In this article, we first show that for the primes p=53, 61, 67, 73, 79, 83, 89, 97, the alternating groups Ap+3 are OD-characterizable, while the symmetric groups Sp+3 are 3-fold OD-characterizable. Next, we show that the automorphism groups Aut (O7(3)) and Aut (S6(3)) are 6-fold OD-characterizable. It is worth mentioning that the prime graphs associated with all these groups are connected.


2012 ◽  
Vol 19 (02) ◽  
pp. 353-358 ◽  
Author(s):  
Tianze Li ◽  
Weigang Xu ◽  
Jiping Zhang

In this note, we explore the relationship between finite groups of characteristic p type and those of p-deficiency class 1. We study the structure of finite groups of characteristic p type. Besides, we show that the p-rank (resp., p-length) of a p-solvable group which is of exact p-deficiency class r(> 0) is bounded by r (resp., a function of r).


2008 ◽  
Vol 15 (03) ◽  
pp. 449-456 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
A. R. Zokayi

The degree pattern of a finite group G is introduced in [10] and it is proved that the following simple groups are uniquely determined by their degree patterns and orders: all sporadic simple groups, alternating groups Ap (p ≥ 5 is a twin prime) and some simple groups of Lie type. In this paper, we continue this investigation. In particular, we show that the automorphism groups of sporadic simple groups (except Aut (J2) and Aut (McL)), all simple C22-groups, the alternating groups Ap, Ap+1, Ap+2 and the symmetric groups Sp, Sp+1, where p is a prime, are also uniquely determined by their degree patterns and orders.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


Sign in / Sign up

Export Citation Format

Share Document