A method of reducing the severity of the thermal stress state in blades of gas turbine engines by selecting the optimum distribution of the thickness of a ceramic thermal barrier coating

1994 ◽  
Vol 26 (1) ◽  
pp. 49-54
Author(s):  
G. N. Tret'yacheno ◽  
Yu. A. Gribkov ◽  
B. S. Karpinos ◽  
V. V. Samuleev
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


2000 ◽  
Vol 66 (650) ◽  
pp. 1841-1846
Author(s):  
Hiroshige ITOH ◽  
Kazuhiro SAITOH ◽  
Takahiro KUBO ◽  
Masashi TAKAHASHI ◽  
Hideo KASHIWAYA

Author(s):  
Y.C. Tsui ◽  
T.W. Clyne ◽  
R.C. Reed

Abstract Thermal barrier coating systems have been heat treated in order to study the oxidation kinetics of the bond coat. All the surfaces of Ni superalloy substrates were sprayed with ~100 μm of a NiCrAlY bond coat, with or without ~250 μm of a ZrO2 top coat. Thermogravimetric analysis (TGA) was used to monitor continuously the mass change as a result of oxidation of the bond coat during heating at 1000°C for 100 hours in flowing air. In addition, some specimens were heated to 1000°C in static air, cooled to room temperature, weighed and re-heated cyclically. The total exposure time was 1000 hours. Rates of weight gain were found to be higher for the cycled specimens, despite the absence of air flow. This is attributed to damage to the oxide film, which was predominantly α-Al2O3, as a consequence of differential thermal contraction stresses. The changing residual stress state during heat treatment was predicted using a previously-developed numerical model. A thin (1 mm) substrate with ~100 μm bond coat and ~250 μm ZrO2 top coat was used in these simulations, which incorporated creep of the bond coat and the lateral strain associated with oxidation. It is concluded from these computations that, while high stresses develop in the oxide layer, the associated driving forces for interfacial debonding remain relatively low, as do specimen curvature changes. It seems likely that coating spallation after extensive oxide layer formation arises because the interface is strongly embrittled as the layer thickens.


Author(s):  
N. Mifune ◽  
Y. Harada ◽  
H. Taira ◽  
S. Mishima

Abstract Higher-temperature operation in a gas turbine has urged development of heat-resistant coatings and thermal barrier coatings. We have developed a 2CaO-SiO2-CaO-ZrO2 based thermal barrier coating. This coating should effectively prevent separation of the coating by relieving the shear stress generated due to thermal change of environment between layers with dissimilar properties. The coating was applied to stationary vanes of an actual gas turbine in a 25,000-hour test. This paper describes the results of the field test.


Sign in / Sign up

Export Citation Format

Share Document