lateral strain
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 53)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
A.M. Elhashimy ◽  
◽  
A. Abbas ◽  

This paper presents the results of an experimental study on the biaxial compression behavior of concrete prism confined using pre-stressed bars. The pre-stressed bars could provide passive confinement stress, that preventing the lateral strain of the prism from increasing leading to an increase in both the initial modulus of elasticity and prism compressive strength. The confined concrete had a higher compressive strength that was directly proportional to the confinement bar pressing force and lower ductility than the plain prisms. The concrete initial modulus of elasticity is directly proportioned to the confinement lateral pressure of the prestressing bar and inversely proportion with the spacing between prestressing bars. It was simple to find out that the best pre-stressing stress was 10 N/mm2, also the compressive strength of the confined concrete with pre-stressed skew bars was greater than the compressive strength of the unconfined concrete by more 3.3 times.


2022 ◽  
Author(s):  
Javier Alejandro Franquet ◽  
Viraj Nitin Telang ◽  
Hayat Abdi Ibrahim Jibar ◽  
Karem Alejandra Khan

Abstract The scope of this work is to measure downhole fracture-initiation pressures in multiple carbonate reservoirs located onshore about 50 km from Abu Dhabi city. The objective of characterizing formation breakdown across several reservoirs is to quantify the maximum gas and CO2 injection capacity on each reservoir layer for pressure maintenance and enhance oil recovery operations. This study also acquires pore pressure and fracture closure pressure measurements for calibrating the geomechanical in-situ stress model and far-field lateral strain boundary conditions. Several single-probe pressure drawdown and straddle packer microfrac injection tests provide accurate downhole measurements of reservoir pore pressure, fracture initiation, reopening and fracture closure pressures. These tests are achieved using a wireline or pipe-conveyed straddle packer logging tool capable to isolate 3 feet of openhole formation in a vertical pilot hole across five Lower Cretaceous carbonate reservoirs zones. The fracture closure pressures are obtained from three decline methods during the pressure fall-off after fracture propagation injection cycle. The three methods are: (1) square-root of the shut-in time, (2) G-Function pressure derivative, and (3) Log-Log pressure derivative. The far-field strain values are estimated by multi-variable regression from the microfrac test data and the core-calibrated static elastic properties of the formations where the stress tests are done. The reservoir pressure across these carbonate formations are between 0.48 to 0.5 psi/ft with a value repeatability of 0.05 psi among build-up tests and 0.05 psi/min of pressure stability. The formation breakdown pressures are obtained between 0.97 and 1.12 psi/ft over 5,500 psi above hydrostatic pressure. The in-situ fracture closure measurements provide the magnitude of the minimum horizontal stress 0.74 - 0.83 psi/ft which is used to back-calculate the lateral strain values (0.15 and 0.72 mStrain) as far-field boundary condition for subsequent geomechanical modeling. These measurements provide critical subsurface information to accurately predict wellbore stability, hydraulic fracture containment and CO2 injection capacity for effective enhance oil recovery within these reservoirs. This in-situ stress wellbore data represents the first of its kind in the field allowing petroleum and reservoir engineers to optimize the subsurface injection plans for efficient field developing.


2021 ◽  
Vol 18 (5) ◽  
pp. 642-652
Author(s):  
Jiali Ren ◽  
Yang Wang ◽  
De-Hua Han ◽  
Luanxiao Zhao ◽  
Teng Long ◽  
...  

Abstract Determining the crack initiation stress (Ci) for unconventional shale rocks is of critical importance in describing the entire failure process of unconventional shale reservoirs. We propose a new method to identify Ci values based on triaxial failure tests on four organic shale samples, attempting to improve the shortcomings of other methods. The new method is based on the relationship between crack development and strain energy evolution (SEE). Additionally, the proposed SEE method is compared with three widely used methods, including crack volumetric strain (CVS), moving point regression (MPR) and the lateral strain response (LSR), intending to examine the performance of different methods. The contrastive results indicate that the LSR method cannot determine Ci when the rock ruptures without volumetric dilatancy, which frequently occurs in the compression process of organic shales. Ci values obtained using the SEE method are consistent with those from the CVS and MPR methods. However, the proposed SEE method with a solid physical basis is more objective and stable than the CVS and MPR methods. The proposed method, from one aspect, compensates for the shortcomings of other methods when facing different failure modes in organic shales. From the other aspect, it provides a way to precisely determine Ci values for applications in wellbore stability evaluation and hydraulic fracturing design.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian-jun Ren ◽  
Shan-Yang Wei ◽  
Shi-Hai Shu ◽  
Wei-Dong Luo

To study the lateral deformation characteristics of coal under different confining pressures, coal compression experiments with confining pressures of 0 MPa, 3 MPa, 5 MPa, and 7 MPa were conducted under the same loading rate by using the TAW-2000 electrohydraulic servo rock mechanics experimental machine. The results of the study showed the following: at the initial stage of loading, the lateral strain of coal was about 12.22%–46.9% of the axial strain at the elastic deformation stage and 41.18%–64.96% of the axial strain at the inelastic deformation to peak stress stage. Compared with the experiment under 0 MPa confining pressure, the growth rate of the lateral strain of the coal under 3 MPa, 5 MPa, and 7 MPa confining pressures was much smaller than that of the corresponding axial strain. When the coal was damaged under different confining pressures, the lateral strain was maintained at about 0.6 × 10−2. Based on the field verification, we proposed that the lateral strain during the coal failure and the nonlinear region of the lateral axis ratio changing with time can be used as potential parameters for predicting the coal failure.


Author(s):  
Swathy Krishnan B* ◽  
Prakhar Duggal ◽  
Ravinder Kumar Tomar

The structure that are widely used around the gold now days are mainly composite structure. These types of models or structures are used to make long span lower story heights and also to give extra stiffness. The past result shows that most of the collapses of buildings occur when the structure is struck with earthquake or seismic load. The poison’s ratio is one of the most integral part which gives stability for the structure. In this research it is about the change is the poison’s ratio that occurs with the change in percentage of steel and the grade of concrete in a reinforced concrete section. The variation in poisons ratio shows the variation in the stability of the structure. The study of the poisons ratio will help in a better practical design of the structure to prevent or the resist the structure from collapse during earthquake. In this paper we will see the experimental variation of the poisons ratio of column and we will analysis the behavior using software. Poison’s ratio usually deals with the lateral strain and linear strain. This poisons ratio was found out by Simeon poison. It is one of the most important aspects in the design of any kind of structure.


2021 ◽  
Author(s):  
Michael Alexander Shaver ◽  
Gilles Pierre Michel Segret ◽  
Denya Pratama Yudhia ◽  
Suhail Mohammed Al Ameri ◽  
Erwan Couziqou ◽  
...  

Abstract Thin layering and micro-fracturing of the thin laminated layers are some possible reasons for the wellbore stability problems of the Nahr Umr shale. If the drilling fluid density is too low, collapsing of the borehole is possible, and if the drilling fluid density is too high, invasion of the shale can occur, weakening the shale, making boreholes prone to instability. These effects can be semi-quantified and assessed through the development of a geomechanical model. The application of a geomechanical model of a reservoir and overlaying formations can be very useful for addressing ways to select a sweet spot and optimize the completion and development of a reservoir. The geomechanical model also provides a sound basis for addressing unforeseen drilling and borehole stability problems that are encountered during the life cycle of a reservoir. Key components of any geomechanical model are the principal stresses at depth: overburden, minimum horizontal principle stress, and maximum horizontal principle stress. These determine the existing tectonic fault regime: normal, strike-slip, and reverse. Additional components of a geomechanical model are pore pressure, unconfined compressive strength (UCS) rock strength, tilted anisotropy, and fracture and faults from image logs and seismic. Unfortunately, models used to make continuous well logging depth-based stress predictions involve some parameters that are derived from laboratory tests, fracture injection tests, and the actual fracturing of a well—all contributing to the uncertainty of the model predictions. This paper addresses ways to obtain these key parameter components of the geomechanical model from well logging data calibrated to ancillary data. It is shown how stress, UCS, and pore pressure prediction and interpretation can be improved by developing and applying models using wellbore acoustic, triple combo, and borehole image data calibrated to laboratory and field measurements. The nahr umr shale and other organic mudstone formations exhibit vertical transverse isotropic (VTI) anisotropy in the sense that rock properties are different in the vertical and horizontal directions (assuming non-tilted flatbed layering), the horizontal acoustic velocity is different from that of vertical velocity. This necessitates the building of anisotropic moduli and stress models. The anisotropic stress models require lateral strain, which as shown in the paper, can be obtained from micro-frac tests and/or borehole breakout data.


2021 ◽  
Author(s):  
Felix Nolte

In this thesis, elastography is evaluated in combination with optical coherence tomography (OCT). Two approaches to OCT based elastography, Digital image correlation (DIC) and Doppler optical coherence elastography (DOCE), are evaluated for an intravascular setup using in vivo images from a porcine carotid model. DIC tracks the displacement of speckle patterns in consecutive frames, allowing the calculation of axial and lateral strain. Rapid speckle decorrelation was observed in preprocessed structural images, affecting the tracking and limiting the feasibility of this algorithm. DOCE measures axial strain based on relative tissue velocities. Rotational movement of the imaging optical fibre was the biggest source of artefacts in this imaging mode, but could be removed with a newly developed algorithm, based on the phase change induced in a surrounding catheter. The standard deviation of phase after artefact removal, measured in a stationary phantom experiment, was ~0.2 rad, corresponding to a minimum detectable velocity of 792 μm/s at a Doppler angle of 20°. The sensitivity allowed the detection of arterial blood flow velocity and pattern and the detection of adjacent veins, but did not allow direct elastography.


2021 ◽  
Author(s):  
Felix Nolte

In this thesis, elastography is evaluated in combination with optical coherence tomography (OCT). Two approaches to OCT based elastography, Digital image correlation (DIC) and Doppler optical coherence elastography (DOCE), are evaluated for an intravascular setup using in vivo images from a porcine carotid model. DIC tracks the displacement of speckle patterns in consecutive frames, allowing the calculation of axial and lateral strain. Rapid speckle decorrelation was observed in preprocessed structural images, affecting the tracking and limiting the feasibility of this algorithm. DOCE measures axial strain based on relative tissue velocities. Rotational movement of the imaging optical fibre was the biggest source of artefacts in this imaging mode, but could be removed with a newly developed algorithm, based on the phase change induced in a surrounding catheter. The standard deviation of phase after artefact removal, measured in a stationary phantom experiment, was ~0.2 rad, corresponding to a minimum detectable velocity of 792 μm/s at a Doppler angle of 20°. The sensitivity allowed the detection of arterial blood flow velocity and pattern and the detection of adjacent veins, but did not allow direct elastography.


Sign in / Sign up

Export Citation Format

Share Document