Propagation and electrical entrainment of intestinal slow waves

1972 ◽  
Vol 17 (4) ◽  
pp. 311-316 ◽  
Author(s):  
Philip C. Specht ◽  
Alex Bortoff
1985 ◽  
Vol 249 (1) ◽  
pp. G92-G99 ◽  
Author(s):  
J. J. Galligan ◽  
M. Costa ◽  
J. B. Furness

Myoelectric activity was recorded from the gastric antrum and small intestine of conscious, unrestrained guinea pigs using bipolar Ag-Ag chloride electrodes that had been previously implanted under pentobarbital sodium/Innovar anesthesia. In fasted guinea pigs, the migrating myoelectric complex (MMC) was recorded from the small intestine and was observed to propagate aborally at a speed that declined with distance from the pylorus (range of speeds of the front of phase 3: 17.5 cm/min in the duodenum to 4.1 cm/min in the ileum). The complex was not disrupted by feeding but occurred less frequently in the freely fed state (82-min cycle period in the fasted state versus 139 min in the fed state). The complex started in the duodenum and was accompanied by a brief (6.3 +/- 0.9 min) period of inhibition of antral myoelectric activity. Slow waves were also recorded from the gastric antrum (10.3 +/- 1.3/min) and the small intestine. The frequency of intestinal slow waves was uniform along the length of the bowel (26.2 +/- 1.3/min in the duodenum to 24.7 +/- 1.3/min in the ileum). It is concluded that the guinea pig is similar to other mammalian species, so far examined, in its pattern of gastrointestinal myoelectric activity.


1982 ◽  
Vol 243 (1) ◽  
pp. C7-C13 ◽  
Author(s):  
A. W. Mangel ◽  
J. A. Connor ◽  
C. L. Prosser

Intact segments of cat intestinal muscle and strips of isolated longitudinal muscle were treated with agents that reduce intracellular calcium concentration: incubation in 0-calcium saline, treatment with calcium conductance blockers, elevated extracellular magnesium concentration, or alkalinization with NH4Cl. These treatments reduced amplitude and frequency of slow waves in intact segments but only reduced frequency in isolated longitudinal muscle. The reduction in frequency was characterized by prolongation of the hyperpolarized phase of the slow waves. Treatments that would moderately increase intracellular calcium concentration, i.e., increasing external calcium to four times normal levels or lowering pH by CO2, increased slow-wave frequency. Increased frequency was associated with reduced amplitude and shortening of the hyperpolarized phase of the slow waves. Greater than four times normal calcium levels and intense spiking reduced slow-wave frequency. Chlorotetracycline fluorescence, an indicator of intracellular calcium concentration, showed fluctuations synchronous with slow waves. It is concluded that the reactions that pace the generation of slow waves are dependent on the level of intracellular calcium.


2009 ◽  
Vol 297 (5) ◽  
pp. R1392-R1399 ◽  
Author(s):  
Yan Sun ◽  
Geng-Qing Song ◽  
Jieyun Yin ◽  
Yong Lei ◽  
Jiande D. Z. Chen

The aims of this study were to determine optimal pacing parameters of electrical stimulation on different gut segments and to investigate effects and possible mechanisms of gastrointestinal electrical stimulation on gut slow waves. Twelve female hound-mix dogs were used in this study. A total of six pairs of electrodes were implanted on the stomach, duodenum, and ascending colon. Bilateral truncal vagotomy was performed in six of the dogs. One experiment was designed to study the effects of the pacing frequency on the entrainment of gut slow waves. Another experiment was designed to study the modulatory effects of the vagal and sympathetic pathways on gastrointestinal pacing. The frequency of slow waves was 4.88 ± 0.23 cpm (range, 4–6 cpm) in the stomach and 19.68 ± 0.31 cpm (range, 18–22 cpm) in the duodenum. There were no consistent or dominant frequencies of the slow waves in the colon. The optimal parameters to entrain slow waves were: frequency of 1.1 intrinsic frequency (IF; 10% higher than IF) and pulse width of 150–450 ms (mean, 320.0 ± 85.4 ms) for the stomach, and 1.1 IF and 10–20 ms for the small intestine. Electrical stimulation was not able to alter colon slow waves. The maximum entrainable frequency was 1.27 IF in the stomach and 1.21 IF in the duodenum. Gastrointestinal pacing was not blocked by vagotomy nor the application of an α- or β-adrenergic receptor antagonist; whereas the induction of gastric dysrhythmia with electrical stimulation was completely blocked by the application of the α- or β-adrenergic receptor antagonist. Gastrointestinal pacing is achievable in the stomach and small intestine but not the colon, and the maximal entrainable frequency of the gastric and small intestinal slow waves is about 20% higher than the IF. The entrainment of slow waves with gastrointestinal pacing is not modulated by the vagal or sympathetic pathways, suggesting a purely peripheral or muscle effect.


Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 396 ◽  
Author(s):  
Victor Zena-Giménez ◽  
Javier Garcia-Casado ◽  
Yiyao Ye-Lin ◽  
Eduardo Garcia-Breijo ◽  
Gema Prats-Boluda

Author(s):  
K.W. Romanski

Cholecystokinin exerts a composite influence on gastrointestinal motility but little is known about its effect on small-intestinal slow waves. Thus, six rams were implanted with four bipolar serosal electrodes onto the duodeno-jejunal wall. In the course of chronic experiments the myoelectric activity was continuously recorded in the non-fasted animals. After recording of the full normal migrating myoelectric complex (MMC), 0.15 M NaCl or CCK peptides were injected intravenously during various phases of the next MMC cycle. Five mℓ of saline was injected over 30 s during phases 1, 2a, or 2b of the MMC. Cerulein was administered at doses of 1 (over 30 s), 10 (over 30 or 60 s), or 100 ng/kg (over 30, 60, 120 or 300 s) and cholecystokinin octapeptide (CCK-OP) at doses 20 times higher. CCK peptides were applied during early or late phase 1 of the MMC and during phases 2a and 2b of the MMC. In the course of additional experiments, saline and hormone administration was directly preceded by infusion of proglumide, an unspecific CCK receptor antagonist, at a dose of 10 mg/kg. The myoelectric recordings were continued until the arrival of a subsequent regular phase 3 of theMMC.In the duodenal bulb, slow waves were occasionally observed. In the duodenum the slow-wave frequency oscillated between 20 and 24 cpm and in the jejunum between 19 and 22 cpm before or after CCK peptides and proglumide. In the duodenum the slow-wave amplitude increased significantly after all doses of cerulein injected during phase 2b of the MMC. After administration of CCK-OP changes in duodenal slow-wave amplitude were not significant but exhibited a tendency similar to those after cerulein. In the jejunum, injection of cerulein and CCK-OP during phase 2 of the MMC increased the slow-wave amplitude significantly and the duration of these changes was longer than in the duodenum. After infusion of proglumide, administration of cerulein at the low dose over 30 s and at the high dose over 300 s in the course of late phase 1 and phases 2a and 2b of the MMC, significantly increased the duodenal slow-wave amplitude. Cerulein injection during phase 2b of the MMC at the high dose over 30 and 60 s, preceded by proglumide infusion, significantly inhibited the duodenal slow-wave amplitude. In the jejunum these changes were even more pronounced and their duration was much longer. It is concluded that CCK peptides affect slow-wave amplitude in the duodeno-jejunum in non-fasted sheep. This effect is stronger in the jejunum and is altered but not abolished by pretreatment with proglumide. Cerulein evokes more pronounced alterations in the slow-wave amplitude than CCK-OP in conscious sheep.


2007 ◽  
Vol 22 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Full-Young Chang ◽  
Ching-Liang Lu ◽  
Chih-Yen Chen ◽  
Jiing-Chyuan Luo ◽  
Shou-Dong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document