Effects of alterations in calcium levels on cat small intestinal slow waves

1982 ◽  
Vol 243 (1) ◽  
pp. C7-C13 ◽  
Author(s):  
A. W. Mangel ◽  
J. A. Connor ◽  
C. L. Prosser

Intact segments of cat intestinal muscle and strips of isolated longitudinal muscle were treated with agents that reduce intracellular calcium concentration: incubation in 0-calcium saline, treatment with calcium conductance blockers, elevated extracellular magnesium concentration, or alkalinization with NH4Cl. These treatments reduced amplitude and frequency of slow waves in intact segments but only reduced frequency in isolated longitudinal muscle. The reduction in frequency was characterized by prolongation of the hyperpolarized phase of the slow waves. Treatments that would moderately increase intracellular calcium concentration, i.e., increasing external calcium to four times normal levels or lowering pH by CO2, increased slow-wave frequency. Increased frequency was associated with reduced amplitude and shortening of the hyperpolarized phase of the slow waves. Greater than four times normal calcium levels and intense spiking reduced slow-wave frequency. Chlorotetracycline fluorescence, an indicator of intracellular calcium concentration, showed fluctuations synchronous with slow waves. It is concluded that the reactions that pace the generation of slow waves are dependent on the level of intracellular calcium.

1981 ◽  
Vol 240 (3) ◽  
pp. C135-C147 ◽  
Author(s):  
A. Bortoff ◽  
D. Michaels ◽  
P. Mistretta

The purpose of these experiments was to test the hypothesis that circular muscle plays an active role in the propagation of intestinal slow waves, specifically be providing excitatory current through a process of regenerative amplification. With volume-recording techniques and microelectrode recordings we obtained the following results that are not consistent with such a mechanism: 1) slow waves propagated without delay or decrease in amplitude along segments of cat jejunum devoid of a ring of circular muscle up to 3 mm wide, i.e., across a longitudinal muscle bridge more than 4 space constants long (9 of 11 preparations) but did not propagate across a circumferential cut through the longitudinal muscle layer (14 of 14 preparations); 2) the membrane current associated with the slow wave had a pronounced inward component when recorded from either the serosal or the mucosal side of the longitudinal muscle bridge but was entirely outward when recorded from either the mucosal or the serosal side of exposed circular muscle, including those preparations in which various thicknesses of circular muscle were removed from the mucosal side of the recording area; 3) slow-wave amplitudes recorded intracellularly from intact (n = 9) and isolated (n = 8) longitudinal muscle preparations were not significantly different (27.0 +/- 4.3 vs. 25.4 +/- 5.3 (SD) mV); 4) after 30 min in 4.4 X 10(-6) M verapamil, slow-wave amplitude did not significantly decrease, although contractile activity had long since terminated. These results are more consistent with the hypothesis that longitudinal muscle provides most, if not all, of the current required for slow-wave propagation in the small intestine.


2002 ◽  
Vol 58 (2) ◽  
pp. 203-205 ◽  
Author(s):  
András Palotás ◽  
János Kálmán ◽  
Miklós Palotás ◽  
Anna Juhász ◽  
Zoltán Janka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document