Tritium distribution and spreading in the North Sea and the Baltic Sea in 1980/81, as well as in the surface water of the North Atlantic in 1979

1982 ◽  
Vol 35 (4) ◽  
pp. 177-186 ◽  
Author(s):  
Christoph Wedekind
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Michał Saniewski

The Baltic Sea is one of the most contaminated seas by the radioactive isotope of strontium in the world; therefore the activity of90Sr is regularly controlled. Due to that fact, seawater samples for90Sr determination were collected at 16 stations located in the southern Baltic Sea between 2005 and 2010. In this period average activity of90Sr was 7.8 Bq m−3and varied within the range from 3.0 Bq m−3to 11.9 Bq m−3. Because the higher activity of90Sr was measured in the Baltic Sea than in the North Sea and rivers, inflows from the North Sea and the riverine runoff decreased90Sr activity in the Baltic Sea. The average90Sr activity in the bottom water along the offshore profile was 18% lower than that in the surface water and it was caused by an inflow of salt water from the North Sea. In the Vistula River mouth the average activity of90Sr in the surface water was about 15% lower than the average activity in the bottom waters. Coastal areas, relatively shallow with good mixing condition in the water column, were characterized by low variability in90Sr activity.


2014 ◽  
Vol 14 (15) ◽  
pp. 21943-21974 ◽  
Author(s):  
J. E. Jonson ◽  
J. P. Jalkanen ◽  
L. Johansson ◽  
M. Gauss ◽  
H. A. C. Denier van der Gon

Abstract. Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased, although recently sulphur emissions, and subsequently particle emissions, have decreased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (Sulphur Emission Control Areas). The maximum allowed sulphur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulphur directive. In the SECAs the maximum fuel content of sulphur is currently 1% (the global average is about 2.4%). This will be reduced to 0.1% from 2015, following the new IMO rules (International Maritime Organisation). In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLL) have been calculated by comparing model calculations with and without ship emissions in the two sea areas. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of stricter controls on sulphur emissions from mid 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with present emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter emission control on sulphur show a general decrease in calculated particle concentration. At the same time, however, an increase in ship activity has resulted in higher emissions and subsequently air concentrations, in particular of NOx, especially in and around several major ports. Additional model calculations have been made with land based and ship emissions representative of year 2030. Following a decrease in emissions, air quality is expected to improve, and depositions to be reduced. Particles from shipping are expected to decrease as a result of emission controls in the SECAs. Further controls of NOx emissions from shipping are not decided, and calculations are presented with and without such controls.


2019 ◽  
Vol 6 (9) ◽  
pp. 190886 ◽  
Author(s):  
Aurora García-Berro ◽  
Johanna Yliportimo ◽  
Kai Lindström ◽  
Charlotta Kvarnemo

The operational sex ratio (OSR, ready-to-mate males to females) is a key factor determining mating competition. A shortage of a resource essential for reproduction of one sex can affect OSR and lead to competition within the opposite sex for resource-holding mates. In the sand goby ( Pomatoschistus minutus ), a fish with paternal care, male readiness to mate depends on acquiring a nest-site, whereas food abundance primarily impacts female egg production. Comparing body condition and gonadal investment of fish from two populations with different availability in resources (Baltic Sea: few nest-sites, more food; North Sea: many nest-sites, less food), we predicted females carrying more mature eggs in the Baltic Sea than in the North Sea. As predicted, ovaries were larger in Baltic Sea females, and so was the liver (storage of energy reserves and vitellogenic compounds) for both sexes, but particularly for females. More females were judged (based on roundness scores) to be ready to spawn in the Baltic Sea. Together with a nest colonization experiment confirming a previously documented difference between the two areas in nest-site availability, these results indicate a more female-biased OSR in the Baltic Sea population, compared to the North Sea, and generates a prediction that female–female competition for mating opportunities is stronger in the Baltic population. To our knowledge, this is the first time that female reproductive investment is discussed in relation to OSR using field data.


2016 ◽  
Vol 162-163 ◽  
pp. 289-299 ◽  
Author(s):  
A. Daraoui ◽  
L. Tosch ◽  
M. Gorny ◽  
R. Michel ◽  
I. Goroncy ◽  
...  

2012 ◽  
Vol 5 (5) ◽  
pp. 1085-1098 ◽  
Author(s):  
N. Berg ◽  
J. Mellqvist ◽  
J.-P. Jalkanen ◽  
J. Balzani

Abstract. A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h−1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h−1, and the average NO2 emission was (33 ± 8) kg h−1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h−1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (−30 ± 14)% and (−41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative error budget indicates uncertainties within 30–45% but for a reliable error analysis the optical light path needs to be modelled. A ship emission model, FMI-STEAM, has been compared to the optical measurements showing an 18% overestimation and a correlation coefficient (R2) of 0.6. It is shown that a combination of the optical method with modelled power consumption can estimate the sulphur fuel content within 40%, which would be sufficient to detect the difference between ships running at 1% and at 0.1%, limits applicable within the IMO regulated areas.


2020 ◽  
Author(s):  
Meike Becker ◽  
Are Olsen ◽  
Peter Landschützer ◽  
Abdirhaman Omar ◽  
Gregor Rehder ◽  
...  

Abstract. We developed a simple method to refine existing open ocean maps towards different coastal seas. Using a multi linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (North Sea, Baltic Sea, Norwegian Coast and in the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded SOCAT v5 data revealed standard deviations of the residuals 0 ± 26 μatm in the North Sea, 0 ± 16 μatm along the Norwegian Coast, 0 ± 19 μatm in the Barents Sea, and 2 ± 42 μatm in the Baltic Sea.We used these maps as basis to investigate trends in fCO2, pH and air-sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied region. Only the western part of the North Sea is showing an increase in fCO2 close to 2 μatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than possibly observable trends. Consistently, the pH trends were smaller than expected for an increase of fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air-sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.


2021 ◽  
Vol 18 (3) ◽  
pp. 1127-1147
Author(s):  
Meike Becker ◽  
Are Olsen ◽  
Peter Landschützer ◽  
Abdirhaman Omar ◽  
Gregor Rehder ◽  
...  

Abstract. We developed a simple method to refine existing open-ocean maps and extend them towards different coastal seas. Using a multi-linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded Surface Ocean CO2 Atlas (SOCAT) v5 data revealed mean biases and standard deviations of 0 ± 26 µatm in the North Sea, 0 ± 16 µatm along the Norwegian Coast, 0 ± 19 µatm in the Barents Sea and 2 ± 42 µatm in the Baltic Sea. We used these maps to investigate trends in fCO2, pH and air–sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied regions. The only exception to this is the western part of the North Sea, where sea surface fCO2 increases by 2 µatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than the expected trends. Consistently, the pH trends were smaller than expected for an increase in fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air–sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.


Sign in / Sign up

Export Citation Format

Share Document