Some remarks on continuous dependence and uniqueness in finite elastostatics for unbounded domains

Meccanica ◽  
1985 ◽  
Vol 20 (1) ◽  
pp. 6-11
Author(s):  
Edoardo Scarpetta
Author(s):  
Giovanni P. Galdi ◽  
Salvatore Rionero

SynopsisBy suitably coupling convexity and weight function methods, we prove uniqueness and continuous dependence theorems in linear elastodynamics in unbounded domains without definiteness conditions on the elasticities. The class of solutions considered allows the “growth” at large spatial distances.


2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anup Biswas ◽  
Prasun Roychowdhury

AbstractWe study the generalized eigenvalue problem in {\mathbb{R}^{N}} for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 59
Author(s):  
Bruno Carbonaro ◽  
Marco Menale

A complex system is a system involving particles whose pairwise interactions cannot be composed in the same way as in classical Mechanics, i.e., the result of interaction of each particle with all the remaining ones cannot be expressed as a sum of its interactions with each of them (we cannot even know the functional dependence of the total interaction on the single interactions). Moreover, in view of the wide range of its applications to biologic, social, and economic problems, the variables describing the state of the system (i.e., the states of all of its particles) are not always (only) the usual mechanical variables (position and velocity), but (also) many additional variables describing e.g., health, wealth, social condition, social rôle ⋯, and so on. Thus, in order to achieve a mathematical description of the problems of everyday’s life of any human society, either at a microscopic or at a macroscpoic scale, a new mathematical theory (or, more precisely, a scheme of mathematical models), called KTAP, has been devised, which provides an equation which is a generalized version of the Boltzmann equation, to describe in terms of probability distributions the evolution of a non-mechanical complex system. In connection with applications, the classical problems about existence, uniqueness, continuous dependence, and stability of its solutions turn out to be particularly relevant. As far as we are aware, however, the problem of continuous dependence and stability of solutions with respect to perturbations of the parameters expressing the interaction rates of particles and the transition probability densities (see Section The Basic Equations has not been tackled yet). Accordingly, the present paper aims to give some initial results concerning these two basic problems. In particular, Theorem 2 reveals to be stable with respect to small perturbations of parameters, and, as far as instability of solutions with respect to perturbations of parameters is concerned, Theorem 3 shows that solutions are unstable with respect to “large” perturbations of interaction rates; these hints are illustrated by numerical simulations that point out how much solutions corresponding to different values of parameters stay away from each other as t→+∞.


Author(s):  
Thierry Cazenave ◽  
Daoyuan Fang ◽  
Zheng Han

Sign in / Sign up

Export Citation Format

Share Document