scholarly journals Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.

2012 ◽  
Vol 11 (2) ◽  
pp. 285-302 ◽  
Author(s):  
Gary Cohen ◽  
Sébastien Imperiale

AbstractAfter setting a mixed formulation for the propagation of linearized water waves problem, we define its spectral element approximation. Then, in order to take into account unbounded domains, we construct absorbing perfectly matched layer for the problem. We approximate these perfectly matched layer by mixed spectral elements and show their stability using the “frozen coefficient” technique. Finally, numerical results will prove the efficiency of the perfectly matched layer compared to classical absorbing boundary conditions.


2015 ◽  
Author(s):  
Κωνσταντίνος Ζέκιος

Σκοπός της διατριβής αυτής είναι η ιδιοανάλυση ανοικτών ακτινοβολουσών δομών με την εφαρμογή της αριθμητικής τεχνικής πεπερασμένων στοιχείων (Finite Element Method, FEM). Στην ιδιοανάλυση η εξίσωση κύματος επιλύεται απουσία πηγής. Ο βασικός λόγος για τον οποίο η εργασία αυτή κατευθύνθηκε στην ιδιοανάλυση είναι το γεγονός πως μέσω αυτής μπορούν να μελετηθούν τα φυσικά χαρακτηριστικά της υπό μελέτης δομής. Πρόκειται στην πραγματικότητα για μια συμπληρωματική ανάλυση της αιτιοκρατικής-ντετερμινιστικής προσέγγισης (πρόκειται για την προσέγγιση στην οποία η εξίσωση κύματος επιλύεται παρουσία πηγής). Η ιδιοανάλυση εφαρμόζεται στην ουσία σε πρώτο χρόνο πριν την αιτιοκρατική προσέγγιση, εισάγωντας ζωτικής σημασίας κατευθυντήριες γραμμές για τη λειτουργικότητα της υπό μελέτης δομής.Προκειμένου να μελετηθεί η συνθήκη ακτινοβολίας μιας δομής είναι απαραίτητη η εισαγωγή μιας τεχνικής περιορισμού του χώρου επίλυσης. Η βασική ιδέα είναι η εισαγωγή μιας φανταστικής επιφάνειας γύρω από την υπο μελέτη δομή, περιορίζοντας τον άπειρο χώρο επίλυσης. Η φανταστική επιφάνεια εισάγει μια μιγαδική αντίσταση, ενώ βασικός της σκοπός είναι να είναι διαφανής σε οποιοδήποτε σκεδανύμενο κύμα. Οι τεχνικές που μπορούν να χρησιμοποιηθούν για την ανάλυση ανοικτών ακτινοβολούντων δομών μπορεί να κατηγοριοποιηθεί στις τοπικές και καθολικές τεχνικές. Η διάκριση αυτή σχετίζεται με το είδος των οριακών συνθηκών που εφαρμόζονται πάνω στη φανταστική επιφάνεια. Στα πλαίσια της διατριβής αυτής γίνεται η ανάπτυξη τόσο μιας τοπικής όσο και μιας καθολικής τεχνικής, εκμεταλλευόμενοι κάθε φορά τα πλεονεκτήματα που προσφέρει η καθεμία. Επιπρόσθετα, το πρόβλημα της εμφάνισης ψευδών λύσεων αναλύεται εκτενώς και προτείνεται μια νέα τεχνική για την απομάκρυνσή τους.Για τις τοπικές οριακές συνθήκες οι απορροφητικές οριακές συνθήκες (absorbing boundary conditions, ABC) πρώτης 1ης και δεύτερης 2ης τάξης εφαρμόζονται. Δεδομένου ότι οι τοπικές οριακές συνθήκες εμφάνιζουν έκδηλα το πρόβλημα των ψευδών λύσεων μια νέα τεχνική για την απομάκρυνσή τους αναπτύχθηκε στα πλαίσια της διατριβής. Η τεχνική αναπτύχθηκε σε μια γενικευμένη μορφή με τέτοιο τρόπο ώστε να μπορεί να εφαρμοσθεί σε μια σειρά από συχνά εμφανιζόμενα προβλήματα στον ηλεκτρομαγνητισμό: i) κλειστές κοιλότητες με τέλεια ηλεκτρικά αγώγιμα τοιχώματα, ii) κλειστές κοιλότητες με τέλεια μαγνητικά αγώγιμα τοιχώματα, iii) κλειστές κοιλότητες με πεπερασμένη αγωγιμότητα τοιχωμάτων (συνθήκη Leontovich), iv) κλειστές κοιλότητες με απώλειες εξαιτίας αγώγιμων φορέων στο εσωτερικό τους, v) ανοικτές ακτινοβολούσες διατάξεις με την εφαρμογή απορροφητικών οριακών συνθηκών πρώτης 1ης και δεύτερης 2ης τάξης, και vi) οποιοδήποτε συνδυασμό των παραπάνω περιπτώσεων.Για τις καθολικές οριακές συνθήκες η διανυσματική τεχνική απεικόνισης δεδομένων Dirichlet σε δεδομένα Neumann (Dirichlet to Neumann mapping, DtN) αναπτύχθηκε. Προκειμένουν να περιορισθεί ο άπειρος χώρος επίλυσης μια φανταστική σφαίρα σχεδιάζεται μέσα στην οποία εσωκλείεται η υπό μελέτη δομή. Στην περίπτωση αυτή το ηλεκτρομαγνητικό πεδίο έξω από τη σφαίρα περιγράφεται από ένα άπειρο πλήθος σφαιρικών αρμονικών. Οι αρμονικές αυτές εκφράζονται σε όρους σφαιρικών αρμονικών Hankel τάξης v=n+1/2 και δεύτερου τύπου στην ακτινική διεύθυνση, ενώ έχουν και ημιτονοειδή εξάρτηση στις δύο γωνίες φ και θ (e^{+jmφ} , $e^{-jmθ}). Μέσα στη σφαίρα αναπτύσσεται η αριθμητική τεχνική των πεπερασμένων στοιχείων. Η συσχέτιση των δύο λύσεων επιτυγχάνεται με την εφαρμογή της συνέχειας του πεδίου τόσο ως προς τις ηλεκτρικές όσο και ως προς τις μαγνητικές εφαπτομενικές συνιστώσες (Eφ, Eθ, Hφ, Hθ) πάνω στην φανταστική επιφάνεια. Στη συνέχεια εφαρμόζονται οι συνθήκες ορθογωνιότητας τωνς σφαρικών αρμονικών καταστρώνοντας ένα σύστημα εξισώσεων. Οι συντελεστές βάρους του αναπτύγματος του πεδίου του χώρου έξω από τη σφαιρική επιφάνεια αποτελούν τους άγνωστους. Το ανάπτυγμα του πεδίου εκφράζεται με τον τρόπο αυτό σε όρους των συναρτήσεων των πεπερασμένων στοιχείων μέσω των οριακών συνθηκών. Έτσι με τον τρόπο αυτό καταστρώνεται μια κλειστή έκφραση, η οποία είναι γραμμένη σε ένα σύστημα εξισώσεων και που μπορεί να επιλυθεί ώστε να προσδιοριστούν οι τιμές του πεδίου. Πολύ σημαντικός επίσης είναι ο υπολογισμός του μακρινού πεδίου, το οποίο μπορεί εύκολα να υπολογισθεί αξιοποιώντας τους συντελεστές βάρους των σφαιρικών αρμονικών. Με βάση τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα είναι δυνατόν να επιλεγεί η καλύτερη τροφοδοσία ώστε να επιτευχθεί ο κατάλληλος ρυθμός. Λαμβάνοντας υπόψιν όλα τα παραπάνω, το ανοικτό πρόβλημα μετασχηματίζεται σε ένα ισοδύναμο κλειστό γενικευμένο πρόβλημα ιδιοτιμών, το οποίο όμως είναι μη-γραμμικό. Η μη γραμμικότητα παρουσιάζεται εξαιτίας της εμφάνισης της ιδιοτιμής του προβλήματος στο όρισμα των συναρτήσεων Hankel. Για να αντιμετωπιστεί η μη-γραμμικότητα αυτή ο αλγόριθμος εσφαλμένης θέσης (regula falsi) αναπτύσσεται, ενώ το πρόβλημα ιδιοτιμών επιλύεται με την προβολή του αρχικού προβλήματος σε ένα χώρο Krylov και την εφαρμογή του αλγορίθμου Arnoldi αξιοποιώντας την αραιότητα των πινάκων. Αυτό είναι και το βασικό μειονέκτημα της τεχνικής αυτής. Το ότι ο πίνακας διασύνδεσης των δύο λύσεων πρέπει να καταστρώνεται σε κάθε επανάληψη του αλγορίθμου γραμμικοποίησης regula falsi. Αυτό κάνει την τεχνική αυτή αρκετά αργή και υπολογιστικά μη-αποδοτική.


2000 ◽  
Vol 08 (01) ◽  
pp. 139-156 ◽  
Author(s):  
MURTHY N. GUDDATI ◽  
JOHN L. TASSOULAS

Absorbing boundary conditions are generally required for numerical modeling of wave phenomena in unbounded domains. Local absorbing boundary conditions are generally preferred for transient analysis because of their computational efficiency. However, their accuracy is severely limited because the more accurate high-order boundary conditions cannot be implemented easily. In this paper, a new arbitrarily high-order absorbing boundary condition based on continued fraction approximation is presented. Unlike the existing boundary conditions, this one does not contain high-order derivatives, thus making it amenable to implementation in conventional C0 finite element and finite difference methods. The superior numerical properties and implementation aspects of this boundary condition are discussed. Numerical examples are presented to illustrate the performance of these new high-order boundary condition.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 912-918
Author(s):  
M. E. Hayder ◽  
Fang Q. Hu ◽  
M. Y. Hussaini

Sign in / Sign up

Export Citation Format

Share Document