Changes in the action potential and contractile properties of skeletal muscle in human's with repetitive stimulation after long-term dry immersion

1996 ◽  
Vol 74 (6) ◽  
pp. 496-503 ◽  
Author(s):  
Yuri Koryak
2020 ◽  
Vol 153 (1) ◽  
Author(s):  
Aldo Meizoso-Huesca ◽  
Bradley S. Launikonis

BTP2 is an inhibitor of the Ca2+ channel Orai1, which mediates store-operated Ca2+ entry (SOCE). Despite having been extensively used in skeletal muscle, the effects of this inhibitor on Ca2+ handling in muscle cells have not been described. To address this question, we used intra- and extracellular application of BTP2 in mechanically skinned fibers and developed a localized modulator application approach, which provided in-preparation reference and test fiber sections to enhance detection of the effect of Ca2+ handling modulators. In addition to blocking Orai1-dependent SOCE, we found a BTP2-dependent inhibition of resting extracellular Ca2+ flux. Increasing concentrations of BTP2 caused a shift from inducing accumulation of Ca2+ in the t-system due to Orai1 blocking to reducing the resting [Ca2+] in the sealed t-system. This effect was not observed in the absence of functional ryanodine receptors (RYRs), suggesting that higher concentrations of BTP2 impair RYR function. Additionally, we found that BTP2 impaired action potential–induced Ca2+ release from the sarcoplasmic reticulum during repetitive stimulation without compromising the fiber Ca2+ content. BTP2 was found to have an effect on RYR-mediated Ca2+ release, suggesting that RYR is the point of BTP2-induced inhibition during cycles of EC coupling. The effects of BTP2 on the RYR Ca2+ leak and release were abolished by pre-exposure to saponin, indicating that the effects of BTP2 on the RYR are not direct and require a functional t-system. Our results demonstrate the presence of a SOCE channels–mediated basal Ca2+ influx in healthy muscle fibers and indicate that BTP2 has multiple effects on Ca2+ handling, including indirect effects on the activity of the RYR.


1985 ◽  
Vol 54 (2) ◽  
pp. 220-230 ◽  
Author(s):  
J. M. Wojtowicz ◽  
H. L. Atwood

Repetitive stimulation (10-20 Hz) of the motor axon supplying the opener muscle in the crayfish leg produces long-lasting enhancement of excitatory postsynaptic potentials. This long-term facilitation (LTF) was investigated by recording simultaneously from the presynaptic nerve terminal and from the innervated muscle fiber with intracellular microelectrodes. On cessation of stimulation, the facilitated postsynaptic potential declines in amplitude when monitored with low-frequency test stimuli. A rapid decline (phase I) occurs over the first 30 s and is succeeded by a more gradual decline lasting several minutes (phase II). Finally, a residual potentiation with a very slow decay (phase III) persists for several hours. Simultaneous pre- and postsynaptic recordings were made during induction of LTF with stimuli delivered at 20 Hz for 10 min. During the tetanus, excitatory postsynaptic potentials were enhanced 20-fold, while action potentials in the presynaptic terminal declined in amplitude from 108.6 to 97.2 mV, and the presynaptic membrane became hyperpolarized by 6.4 mV. The Na+ pump inhibitor ouabain (0.5-1.0 mM) abolished the hyperpolarization, indicating that the latter resulted from activation of an electrogenic Na+ pump. The reduction in amplitude of the presynaptic action potential was consistent with a reduced transmembrane concentration gradient for Na+. Thus, it is suggested that a significant accumulation of Na+ occurs during repetitive stimulation of crayfish motor axons. Decay of phase II of LTF, but not of phases I or III, had approximately the same time course as the decay of Na+ accumulation in the terminals, monitored by changes in the presynaptic action potential. Thus it is probable that in crayfish this phase of LTF is linked to an increased intraterminal Na+ concentration. Injection of Na+ from a microelectrode into the presynaptic terminal produced enhancement of the excitatory postsynaptic potential lasting for many minutes, as well as changes in presynaptic membrane potential and action potential similar to those seen during repetitive stimulation. The results provide the first direct measurements of electrical and ionic changes in axonal terminals during prolonged periods of activity leading to LTF, and support the hypothesis that accumulation of intraterminal Na+ is associated with one phase of LTF.


2011 ◽  
Vol 300 (5) ◽  
pp. C998-C1012 ◽  
Author(s):  
Naohiro Yamaguchi ◽  
Benjamin L. Prosser ◽  
Farshid Ghassemi ◽  
Le Xu ◽  
Daniel A. Pasek ◽  
...  

In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca2+ concentrations, whereas at micromolar Ca2+ concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice ( Ryr1 D/D) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1 D/D mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1 D/D mice had depressed Ca2+ transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca2+ transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1 D/D mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1 D/D fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca2+ release flux, consistent with increased summation of the Ca2+ transient and contractile force. Peak Ca2+ release flux was suppressed at all voltages in voltage-clamped Ryr1 D/D fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca2+ release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.


Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.


Sign in / Sign up

Export Citation Format

Share Document