A study of the chromosome cycle and the meiotic division-figure in Llaveia Bouvari — A primitive coccid

1931 ◽  
Vol 13 (4) ◽  
pp. 742-769 ◽  
Author(s):  
Sally Hughes-Schrader





Genetics ◽  
1980 ◽  
Vol 96 (3) ◽  
pp. 567-588 ◽  
Author(s):  
Sue Klapholz ◽  
Rochelle Easton Esposito

ABSTRACT ATCC4117 is a strain of S. cerevisiae that undergoes a single nuclear division during sporulation to produce asci containing two diploid ascospores (Grewal and Miller 1972). All clones derived from these spores are sporulation-capable and, like the parental strain, form two-spored asci. In this paper, we describe the genetic analysis of ATCC4117. In tetraploid hybrids of vegetative cells of the ATCC4117 diploid and a/a or α/α diploids, the production of two-spored asci is recessive. From these tetraploids, we have isolated two recessive alleles, designated spo12–1 and spo13–1, each of which alone results in the production of asci with two diploid or near-diploid spores. These alleles are unlinked and segregate as single nuclear genes. spo12–1 is approximately 22 cM from its centromere; spo13–1 has been localized to within 1 cM of arg4 on chromosome VIII. This analysis also revealed that ATCC4117 carries a diploidization gene allelic to or closely linked to HO, modifiers that reduce the number of haploid spores per ascus and alleles affecting the total level of sporulation.



Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 445-458 ◽  
Author(s):  
Amy D Roeder ◽  
Janet M Shaw

Abstract We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y, were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division.



Author(s):  
Mary Ann Handel ◽  
John Cobb ◽  
Shannon Eaker
Keyword(s):  


Genes ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Fengyun Sun ◽  
Mary Ann Handel
Keyword(s):  


PROTOPLASMA ◽  
1981 ◽  
Vol 107 (1-2) ◽  
pp. 189-194
Author(s):  
C. de la Torre ◽  
M. L. Moreno


Sign in / Sign up

Export Citation Format

Share Document