Evoked and spontaneous excitatory postsynaptic currents in cultured hippocampal neurons

1997 ◽  
Vol 29 (4-5) ◽  
pp. 295-295
Author(s):  
E. V. Isaeva ◽  
D. V. Vasilyev ◽  
S. A. Fedulova ◽  
N. S. Veselovsky
2000 ◽  
Vol 32 (3) ◽  
pp. 158-160
Author(s):  
M. A. Chvanov ◽  
Ya. A. Boychuk ◽  
I. V. Melnick ◽  
P. V. Belan ◽  
P. G. Kostyuk

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jifeng Zhang ◽  
Minghui Tan ◽  
Yichen Yin ◽  
Bingyu Ren ◽  
Nannan Jiang ◽  
...  

Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.


2007 ◽  
Vol 97 (2) ◽  
pp. 1485-1494 ◽  
Author(s):  
Dezhi Liao ◽  
Olga O. Grigoriants ◽  
Horace H. Loh ◽  
Ping-Yee Law

Although chronic treatment with morphine is known to alter the function and morphology of excitatory synapses, the effects of other opioids on these synapses are not clear. Here we report distinct effects of several opioids (morphine, [d-ala2,me-phe4,gly5-ol]enkephalin (DAMGO), and etorphine) on miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons: 1) chronic treatment with morphine for >3 days decreased the amplitude, frequency, rise time and decay time of mEPSCs. In contrast, “internalizing” opioids such as etorphine and DAMGO increased the frequency of mEPSCs and had no significant effect on the amplitude and kinetics of mEPSCs. These results demonstrate that different opioids can have distinct effects on the function of excitatory synapses. 2) mu opioid receptor fused with green fluorescence protein (MOR-GFP) is clustered in dendritic spines in most hippocampal neurons but is concentrated in axon-like processes in striatal and corticostriatal nonspiny neurons. It suggests that MORs might mediate pre- or postsynaptic effects depending on cell types. 3) Neurons were cultured from MOR knock-out mice and were exogenously transfected with MOR-GFP. Chronic treatment with morphine suppressed mEPSCs only in neurons that contained postsynaptic MOR-GFP, indicating that opioids can modulate excitatory synaptic transmission postsynaptically. 4) Morphine acutely decreased mEPSC amplitude in neurons expressing exogenous MOR-GFP but had no effect on neurons expressing GFP. It indicates that the low level of endogenous MORs could only allow slow opioid-induced plasticity of excitatory synapses under normal conditions. 5) A theoretical model suggests that morphine might affect the function of spines by decreasing the electrotonic distance from synaptic inputs to the soma.


Sign in / Sign up

Export Citation Format

Share Document