spontaneous excitatory postsynaptic currents
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 1)

2019 ◽  
Vol 130 (4) ◽  
pp. 592-608 ◽  
Author(s):  
Danielle M. Gregor ◽  
Wanhong Zuo ◽  
Rao Fu ◽  
Alex Bekker ◽  
Jiang-Hong Ye

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Recent rat studies indicate that alcohol withdrawal can trigger a negative emotional state including anxiety- and depression-like behaviors and hyperalgesia, as well as elevated glutamatergic transmission and activity in lateral habenula neurons. TRPV1, a vanilloid receptor expressed in the habenula, is involved in pain, alcohol dependence, and glutamatergic transmission. The authors therefore hypothesized that TRPV1 contributes to the changes in both the behavioral phenotypes and the habenula activity in alcohol-withdrawn rats. Methods Adult male Long-Evans rats (n = 110 and 280 for electrophysiology and behaviors, respectively), randomly assigned into the alcohol and water (Naïve) groups, were trained to consume either alcohol or water-only using an intermittent-access procedure. Slice electrophysiology was used to measure spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons. The primary outcome was the change in alcohol-related behaviors and lateral habenula activity induced by pharmacologic manipulation of TRPV1 activity. Results The basal frequency of spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons in alcohol-withdrawn rats was significantly increased. The TRPV1 antagonist capsazepine (10 µM) induced a stronger inhibition on spontaneous excitatory postsynaptic currents (mean ± SD; by 26.1 ± 27.9% [n = 11] vs. 6.7 ± 18.6% [n = 17], P = 0.027) and firing (by 23.4 ± 17.6% [n = 9] vs. 11.9 ± 16.3% [n = 12], P = 0.025) in Withdrawn rats than Naive rats. By contrast, the TRPV1 agonist capsaicin (3 μM) produced a weaker potentiation in Withdrawn than Naïve rats (spontaneous excitatory postsynaptic currents: by 203.6 ± 124.7% [n = 20] vs. 415.2 ± 424.3% [n = 15], P < 0.001; firing: 38.1 ± 14.7% [n = 11] vs. 73.9 ± 41.9% [n = 11], P < 0.001). Conversely, capsaicin’s actions in Naïve but not in Withdrawn rats were significantly attenuated by the pretreatment of TRPV1 endogenous agonist N-Oleoyldopamine. In Withdrawn rats, intra-habenula infusion of TRPV1 antagonists attenuated hyperalgesia and anxiety-like behaviors, decreased alcohol consumption upon resuming drinking, and elicited a conditioned place preference. Conclusions Enhanced TRPV1 function may contribute to increased glutamatergic transmission and activity of lateral habenula neurons, resulting in the aberrant behaviors during ethanol withdrawal.


2009 ◽  
Vol 111 (6) ◽  
pp. 1271-1278 ◽  
Author(s):  
Ke Y. Li ◽  
Yan-zhong Guan ◽  
Kresimir Krnjević ◽  
Jiang H. Ye

Background There is much evidence that the sedative component of anesthesia is mediated by gamma-aminobutyric acid type A (GABA(A)) receptors on hypothalamic neurons responsible for arousal, notably in the tuberomammillary nucleus. These GABA(A) receptors are targeted by gamma-aminobutyric acid-mediated (GABAergic) neurons in the ventrolateral preoptic area (VLPO): When these neurons become active, they inhibit the arousal-producing nuclei and induce sleep. According to recent studies, propofol induces sedation by enhancing VLPO-induced synaptic inhibition, making the target cells more responsive to GABA(A). The authors explored the possibility that propofol also promotes sedation less directly by facilitating excitatory inputs to the VLPO GABAergic neurons. Methods Spontaneous excitatory postsynaptic currents were recorded from VLPO cells-principally mechanically isolated, but also in slices from rats. Results In isolated VLPO GABAergic neurons, propofol increased the frequency of glutamatergic spontaneous excitatory postsynaptic currents without affecting their mean amplitude. The action of propofol was mimicked by muscimol and prevented by gabazine, respectively a specific agonist and antagonist at GABA(A) receptors. It was also suppressed by bumetanide, a blocker of Na-K-Cl cotransporter-mediated inward Cl transport. In slices, propofol also increased the frequency of spontaneous excitatory postsynaptic currents and, at low doses, accelerated firing of VLPO cells. Conclusion Propofol induces sedation, at least in part, by increasing firing of GABAergic neurons in the VLPO, indirectly by activation of GABA(A) receptors on glutamatergic afferents: Because these axons/terminals have a relatively high internal Cl concentration, they are depolarized by GABAergic agents such as propofol, which thus enhance glutamate release.


Sign in / Sign up

Export Citation Format

Share Document